USBEE DX
TEST POD
USERS MANUAL

CWAV - Distributed by:

www.interworldna.com
Tel: 1-877-902-2979

USBee DX Test Pod User’s Manual

USBEE DX TEST POD

USERS MANUAL

CWAV
www.interworldna.com

(877) 902-2979
support@interworldna.com

USBee DX Test Pod User’s Manual 3

USBee DX License Agreement

The following License Agreement is a legal agreement between you (either an individual or entity), the end
user, and CWAV. You have received the USBee Package, which consists of the USBee Pod, USBee Software
and Documentation. If you do not agree to the terms of the agreement, return the unopened USBee Pod and
the accompanying items to CWAV for a full refund. Contact support@usbee.com for the return address.

By opening and using the USBee Pod, you agree to be bound by the terms of this Agreement.
Grant of License

CWAV provides royalty-free Software, both in the USBee Package and on-line at www.usbee.com, for use
with the USBee Pod and grants you license to use this Software under the following conditions: a) You may
use the USBee Software only in conjunction with the USBee Pod, or in demonstration mode with no USBee
Pod connected, b) You may not use this Software in conjunction with any pod providing similar functionality
made by other than CWAV, and c) You may not sell, rent, transfer or lease the Software to another party.

Copyright

No part of the USBee Package (including but not limited to manuals, labels, USBee Pod, or accompanying
diskettes) may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of CWAYV,
with the sole exception of making backup copies of the diskettes for restoration purposes. You may not
reverse engineer, decompile, disassemble, merge or alter the USBee Software or USBee Pod in any way.

Limited Warranty

The USBee Package and related contents are provided “as is” without warranty of any kind, either expressed
or implied, including but not limited to the implied warranties of merchantability and fitness for a particular
purpose, with the sole exception of manufacturing failures in the USBee Pod or diskettes. CWAV warrants the
USBee Pod and physical diskettes to be free from defects in materials and workmanship for a period of 12
(twelve) months from the purchase date. If during this period a defect in the above should occur, the
defective item may be returned to the place of purchase for a replacement. After this period a nominal fee
will be charged for replacement parts. You may, however, return the entire USBee Package within 30 days
from the date of purchase for any reason for a full refund as long as the contents are in the same condition
as when shipped to you. Damaged or incomplete USBee Packages will not be refunded.

The information in the Software and Documentation is subject to change without notice and, except for the
warranty, does not represent a commitment on the part of CWAV. CWAV cannot be held liable for any
mistakes in these items and reserves the right to make changes to the product in order to make
improvements at any time.

IN NO EVENT WILL CWAV BE LIABLE TO YOU FOR DAMAGES, DIRECT, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL, INCLUDING DAMAGES FOR ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL
OR CONSEQUENTIAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE SUCH USBEE POD,
SOFTWARE AND DOCUMENTATION, EVEN IF CWAV HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES OR FOR ANY CLAIM BY ANY OTHER PARTY. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATION
MAY NOT APPLY TO YOU. IN NO EVENT WILL CWAV’S LIABILITY FOR DAMAGES TO YOU OR ANY OTHER
PERSON EVER EXCEED THE AMOUNT OF THE PURCHASE PRICE PAID BY YOU TO CWAV TO ACQUIRE THE
USBEE, REGARDLESS OF THE FORM OF THE CLAIM.

Term

This license agreement is effective until terminated. You may terminate it at any time by returning the
USBee Package (together with the USBee Pod, Software and Documentation) to CWAV. It will also terminate
upon conditions set forth elsewhere in this agreement or if you fail to comply with any term or condition of
this agreement. You agree that upon such termination you will return the USBee Package, together with the
USBee Pod, Software and Documentation, to CWAV.

USBee DX Test Pod User’s Manual, Version 3.1

Copyright 2008 CWAV. All Rights Reserved

4 USBee DX Test Pod User’s Manual

TABLE OF CONTENTS

INTRODUCING THE USBEE DX POD eersrsrnreereeee e aaaaeeseeas 13

PC SYSTEM REQUIREMENTS.......cccciiunnnnnnnnnnnnnnnnnnnnnnnnnnnnnssnnnssssssssssssssssssssssssnes 15

EACH PACKAGE INCLUDES....cc.uttieutieiteeieeeiteeeieesteesteesiteessateesaseessseesaeessseessaesnseesane
HARDWARE SPECIFICATIONS
SOFTWARE INSTALLATION ..uuteeruteenureenureesseessseeesueesateesuseesusseessenesssessseesnsesssseesnsesssseens
CALIBRATION eieitetteeeeeeeeiieteeeeeesaubebeeeeees s s aunbeeeeeeeseaansbeeeeeeaeaannbeeeeeeeaanansreeeeeaeas

LOGIC ANALYZER AND OSCILLOSCOPE (MSO)cccevruminsunensunenineninenssnnissanennes 19

QUUICK START «eeiittteee e e e ettt e e e e e sttt e e e e e s s aaab ettt e e e s e s ansbbeeeeeaeaannbebeeaeeaenansbeeeaeaeas 20
MIXED SIGNAL OSCILLOSCOPE/LOGIC ANALYZER SPECIFICATIONS.uveeerenreeneerneenereneeeneens 21
FEATURES ...ttt ette ettt estteeteeeteeeteesateassseesateeesaseessseaseeeseeanseeenbaeenseesntessnseesssessnseesns
SELUP CONFIGUITTION ..ottt et e et et e e sttt eessntaaesneeaeaaas
RY [T Lo 10 Ao T £ 1=K USRS
POG SEALUS ..ottt ettt ettt s e st s st esse s
ACQUISTEION CONTION ..ottt e ettt a e e ettt a e e e e s esaaees

Trigger CONtrol.........cccoeeeceeeeecceeeescireeen,
Waveform Display and Zoom Settings
Measurements QNG CUISOISccceerueerceeesiieeiieesieesiteesiteesieeesteessseesseenseenns
IMIOEKEIS ...ttt ettt et e et e e sta e e e e siteaenans
ANNOLALIONS........eeeeeeiieeeee ettt e e e e e e
Analog Channel Background COIOruuuieeeeeeciiiiieeeeecciieeeeeeeeecivieea e,
ANQGlog CRANNEI SETEINGSooeceeeeeeeieeeeee et e ee e eeeeeesaea e snea s
ANQIOG GFil LINES ...ttt e e ettt aa e e e e e satanaaeaaa s

BUS DECOTING ..eevetiieeeee ettt eteaeeetta e ataesstaaeeestaesasnaaesnssseaenanes
BUS SELUD ..ttt e e e e eraneeeas
Decoding Bus Traffic — Click and Drag........cccceevcuiiiiiiiiiniiee e esiee e
Decoding Bus Traffic — Multiple Busses
GENETIC BUS SETUP ..uuuiiiiieei ittt e s e s e e e e s s sbaae e e e s s sasbsbaaeeeessnnnrens
CAN BUS SEETUP ceteieiiiiiiiieie sttt e et ttte e e s s sttree e e s e sssabaeeeeesssaraaaeeesessssnsssaaeesensnnnens
USB BUS SETUP ...ttt ettt e e e e et e e e s e s nnaneee s
J2C BUS SETUP 1ottt ettt ettt s ettt e e e s e st e e e e s s s bt it e e e e s s sssbaetbeaeesessnsraneeens
Async Bus Setup.......

Parallel Bus Setup
1-Wire Bus Setup
SPIBUS SEEUP «.etteiiieiiitieee ettt st e e s e st e e s e s s srre e e e e e snnnane
SM Bus Bus Setup
Serial Bus Setup

USBee DX Test Pod User’s Manual 5

125 BUS SELUP 1ottt ettt tte ettt e st e e e s s s bae e e e s e sbbta e e e e ssssbaaeabaeeesessnsraneeens 59

PS/2 BUS SETUD ..cuieuiiieieiietieie st etesteeteeste e e e stesteesesseesbestaessesseessesesanesasessessaenseanean 61
POCKETPIESENEEI™ ..ottt e et e e e et e et e e e saea e s e e esateaeseeaes
OVEIVIBW ...eiiiiiiiiiite ettt ettt ettt st e e e sttt e st e e s e bbee e sabbeessabeeeesaeeeas
Setting Up the PacketPreSENTer.....cccuie e ettt e
Viewing the PacketPresenter Output
Saving PacketPresenter Data to Text or RTF FileS.......ccccvvveeveeviecciieiee e, 67
Copying PacketPresenter Output to Other Programs........cccceeveeveeeveeesveeceeeneesinnens 68
Changing the PacketPresenter Sizecccccccveeiiiiiiiiiiee e 69
Yo o 1T g = o Tl o [ol] & 70
FIEEIING PACKELS...ccvieeieeieeeeie ettt e e aeessaeenneenns 71
Multiple DECOdE DiSPIaYccccuiiiiiiiiiiiiieeciieeeereeseire e e sbre e e siaee e sbeeesebaeesesnsseaeanns 72
PacketPresenter to Waveform AsSOCIatioNnccc.veceeveeerieeneeeree e ee e 73
Cursors on the PacketPresenter OULPUL.........ceevvveeeiiiieiiiee et cree e eiee e v 74
PacketPresenter Definition File FOrmMat........ccocverieeieenieniienienieeneceeenee e 75
Comments in the PacketPresenter Definition Fileccceeeeveivecienecreeeeeeee, 75
Constants in the PacketPresenter Definition File.......ccocceveeniiriienienieeniccieeee, 75
PacketPresenter Definition File SECLIONS......c.cevcveireerieiniiieieeeeneeeeesee e 76
oo o oloY I Y=Tot o o HON PR 76
Byte-wise busses vs. Bit-WiSe DUSSES........cceccuiiiiiiiieiiiieeciiee e ssiee e 76
BUS EVENTS ...ttt e e s e e e s e 77
Data Channels and Multiple Data Signals........cccceeeiereerieenieseeree e, 78
PaCKEt SECLION ..ottt s 79
Y L [o N = g o BT =Tt i o 3 -SSR 79
BYPE = NEXE et

TYPE = SIBNAL .eiiiiiieicet e e e e r e e e nraaes
TYPE = VAU ettt et
TYPE = LENGEN..oeiieeeeee e
TYPE T EVENT oo
TYPE = TIMEOUL ...t s e e s
CHANNELX, CHANNELY or CHANNELXorY
DECOAE SECLION ...eeuveeriiieiieete ettt ettt ettt st b e saae st e saeesreenanee
SUDSTIEULIONS ..veiveeeiieeicesie ettt e eee e eeeee e
FIEIAS SECLION .eveeeiieieerite ettt st s e
Field Lines Processing ...
Unconditional Field Lines
Conditional Field LINES ...c..oevveerieeiieiienieeieesieeiee et
Field LiNe FOrMAt c..eeeiieeieeieecieeee ettt ae e st e saeesee e nnes
Field Format

Bus Events in the middle of @ packet.........cccecveiirciiiiiiiiecnie e, 85
[WoToT 0o I 1] o] =TSRSSt 86
Examples of Field Lines and Fields........cccccevevieiiniiieniiieeiee e, 86

Just Plain Data

USBee DX Test Pod User’s Manual

Conditional Packet FOrmMat.......cccoviieiiieeeiiie et 87

R AT Y= Mo ToT 0 o TSN 88
Conditional Route of data to another Protocolcccceeevveveerieeceenie e 88
PacketPresenter Add-IN APl.........oouioiiiiieieeieerteeieese ettt s 89
Sample PacketPresenter Add-In DECOErS........cocuerveerieereereeeieesee e 90
[WoTo] o] o T=1o Q1 DI=Tolo o[- ORI
Inverting Decoder
Expanding Decoder
COMPresSiNG DECOUERTcccuiiieiiieeeiiee ettt estee et s e e st e e s e e e sbe e e s baeeesssbaee s 91
MUILIPIE DECOTETSvviieiiiiieiiiee ettt ettt ettt e e s bae e et e e sba e e s sabeeesatnbneeenns 92
PacketPresenter Definition File DEDUZEINGccveevveereeeriieeeeeeee e 92
PacketPresenter SPecifiCations.........ccciiiiiiiiiiniieiciee e 93
Example Protocol Files and Output EXamPIescccceereieeieenieereenie e eeeseeenes 94
ASYNC ProtoCOl EXAMPIE ..c.eeeeiieeiecieectee ettt e e ee et e snaeaeneeens
12C Protocol EXAmMPIEccouviiiiiiieciiie ettt et ee e e e st e
Y I o] doTolo I =3 4o =SS
CAN Protocol Example
1-Wire Protocol Example
Parallel Protocol EXamPle......ccovieeiieiieeiie et e et seae e seee e 103
Serial Protocol Example....105
USB Protocol EXamPIE.....ccuiiieiiieiiie ettt ettt st e e sva e e anae e 106
Ry o e o Tole] I =3 YE= Y o o =TS 109
File Save, Save Between Cursors, Open and EXPOrtccceceevevccvveessivenennns 111
Output File Format 111
EXPOrt to TexXt FOrmMat.....c.eviiiiiiieiee et 114
CAlIDIALION .ottt 114
DIGITAL SIGNAL GENERATORcctteiiiitnniiiitnniineneiinissiinessisisssssmsssssssassssnes 115

DIGITAL SIGNAL GENERATOR SPECIFICATIONS

QUUICK START eieitttteee e e ettt e e e e ettt e e e e e s aar et e e e e e saanbeeeeeeeesaanbaneeeeeeeannreneaaeeas
FEATURESetete ittt eeitee e sttt e st e s e e e s e e s sne e e s e et e s saneee s saneeesennneeesanneessneeesesanns
PO SEALUS ...ttt ettt ettt e e et e e staa e e siaeeeeas
(010 Lo 1 1 1T I Y=1 1V« SRS
GENEration CONEIOIcoccuueeeeiiieeiiee ettt ettt
Waveform Edit, Display and Zoom Settings............ccocueecvuveeesvvsesiieresirennn. 119
Setting Waveform Sections..120
Creating ClOCKS ..c.viiiieieeeeste ettt sttt s e e e 120
(O 4 = U YRS 121
MeasuremeNnts QNG CUISOISceeeueeeescuieeeeeiieeesiieeesiteeesiteeesiieeesiieeenans 121
File SQVE AN OPON. ...ttt e et a et e e et e s etaa e ssranaaaens 122

Printing

USBee DX Test Pod User’s Manual 7

DIGITAL VOLTMETER (DVM).....ccccutiimiiiuninsnnensneninesinnisssnisssnesssnesssnessssessssenes 123

DIGITAL VOLTMETER SPECIFICATIONS. ...ceevvttttueeeeeerererunneaeeeeeressssnneeeessssnineeesssessssnnnns 123
QUICK START eieeiittrreeeeeeeeitreeeeeeeeessreeeeeeeeessanssraeeeeeesassbaseeeeeeeasstrrseeeesensssrereeeeens 123
FEATURES ..etttttiieeeeeeeettttieeeeeeeeterataeeeeeeeseraneeeessessstanaesesssessntnnaeseesressnnnnneeeeessnnnnes 124
oo Y (o LY KRN 124
VOItAGE MEASUIEMENTccccceieeee ettt e eeecttee e e e e e ettt e e e e e e essaseaaaeeeas 124
DATA LOGGER........citteeiiitenniitinncettenncerreseesenssessssssesssnssssssnssssssnssssssnssssssnsssaes 125
DATA LOGGER SPECIFICATIONS ..evvvuuueeeeererrrsnnieeeeerserssnnnneseessessssesesessssssnneeessssssssnnnns 125
QUICK START et eeiiitrreeeeeeeiitrereeeeeesssraeeeeeeeessasssreeeseeesasbaseeeeeesaastrsseeeesennsrareeeeens 125
FREQUENCY COUNTER ...cecuuiittenerreennerrennseerenssessessseessassesssnssessenssesssnssssssnssssees 127
FREQUENCY COUNTER SPECIFICATIONS .eeeeeieeeeeeeeeeeeeeeieeeieieseeesesesesesesssansesesensseneneneens 127
QUUICK START etvtttuuieeeeererertneiaeeeeeeeestanaeseessesstaseessssssssnneseessssssssnnneseesssssssnnneseeesees 127
CHANNEL SETUP ..uuuutuuuuuuuueunusnesessssssssssssssssssssssssessnsserens 128
REMOTE CONTROLLERccuucttteuirrennncrrennecerennserreesseeseassesssnssessenssesssnssessenssssees 129

REMOTE CONTROLLER SPECIFICATIONS
[0 1010 7Y SRR

PWIM CONTROLLERcccteueittnnierrencerrenniesensecssnsssessnssssssnssssssnssssssnssssssnssssses 131
PWM CONTROLLER SPECIFICATIONS......cevvvtuueeeeeerererunnaeseeerersssnneseessssnnesesesessssnnnns 132
[1010 7Y 3 RN 132
FREQUENCY GENERATOR......ctteueiteencrreennerrenssesreesserssassesssnssessenssssssnssessenssssses 133
FREQUENCY GENERATOR SPECIFICATIONS ...eeeiteeeeeeeeeeeeeeieieeeieeeeeeeeesesesesesaseeeaeaeanasaneens 133
[1010) 7Y AN 134
I2C CONTROLLER......cccuiitteniitenncerreneerrnsceesenssesssnssssssnssssssnssssssnssssssnssssssnssssase 135
|2C CONTROLLER SPECIFICATIONS ..uuueeeeererrruneieeeeerrrrssnnaeseeesessssnnesesssssnnneeesessssssnnnns 136
QUUICK START 1uuuuuuuuuuuunnunnusnsssssssssssssssssssssssssssssennnnnnsnsssnnssssssssssssnsssssssssnsssssssnsssnnenn 136
PULSE COUNTERceeutiiiteniireeneerteenseerennseseenssessssssessssssesssnssessenssssssnssssssnsssnees 137
PULSE COUNTER SPECIFICATIONSeitieteeeeeeeeeeeieeeieeeeeeeeeeeeeeeseseseseneeeesesaseeeseesenessensens 137
QUICK START
USBEE TOOLBUILDER eestereressestranseteransestrensesstanssssernnssane 139
OVERVIEW. ... eetevttttieeeeereesssnnaeseeeresstsnnaseessssnnaesessssssssnsnaeeessssssssnnneseesssssssnnnanesssses 139
VOIEMELET MOGE..........eeeeeeeeeeeeeeeee ettt ees e e e e etreee e e e eesiaaraaeaaaes 139

8 USBee DX Test Pod User’s Manual

Yo [4lo 0] o1 1V =SS 139
Digital SigNaAl GENEIALOL..........ouveeeeeeceeeeeeeeeeeeeeeeeee et e e crea e e e e e e 141
Bi-Directional and Uni-Directional MOESccccevvueevcuvesvueeseresiieesieenae 141
SYSTEM SOFTWARE ARCHITECTURE
THE USBEE DX POD HARDWAREc..vtteutterteesieeniteesitessieeesseesseesseesareesseesssessseesnne
INSTALLING THE USBEE DX TOOLBUILDER ..c.uvveeuvreeereereesreesseessesssseessseessnseessassnsees 144
USBee DX Toolbuilder Project CONtENTScceeceeeeeeceereecieeessiieeeeiresaesnnns 144
USBEE DX TOOLBUILDER FUNCTIONS ...cceteeeuiteteeeeeeaauieeeeeeeeeseiieteeeeeeaesesanmreneeeesaanns 145
Initializing the USBEe DX POd.............cceeeecueeeeeeciiaesiieeescieeeecieeesaaaesiieaeens 145
ENUMEIAatEDXPOMSccveeeiieeeieeeeeieeeteeste et e ste s e e saeeeteesseeenveenseesneeenseesneeeenseesneens 145
INTLIANIZEDXPOM. ... ccutieieeriie ettt sttt st s be e st st e st ebeesane s 145

SetSignals - Setting the USBee DX Output Signalscccevveeeiiiiieeiveeenirieecciee s 147
GetSignals - Reading the USBee DX Input Signals.........ccccveveeriieeneeneenneenieeceenen, 147
Logic Analyzer and Oscilloscope Functions
Y =T =Y SR
(D111 = U i T SR
StartCapture
CAPLUIESTAtUS .eeeeieeeieeee ettt e e s e e e e s e s e sere e e e e e ennneee

S]] o1 o] 18 < OO P PP URUPTPTPPPIN
[We)=4 =T | D) - OO UPPPPPRP
[=Tolo Yo {1 U L] PSSR
DECOTESP ...ttt ettt ettt st sb e sttt et st e st et eebeenane s
[D1=Tolo e [=] 17 GRS P TP PPPRPRUPPUO
[=Tolo Lo [=T A S SR
DECOAEIWIIE ..ottt ettt sttt e b st e b e sabesbee e saseenbeenanens
[0 =Tolo o 1= 2T 1 OSSR
[=Tolo o[RS S
DecodeASYNC.....
DecodeSetName
Digital Signal Generator FUNCLION..............ccceceeuveeeieeeiciiiiieeeeeesicvieeeaeeeasianns
SEEDATA Lottt st s e e
STAMTGENEIALE ... e e e s e e e e e
GENEratESTAtUS ...t
] oL CL= 1T =L PP RPPPPTPPRN
Digital Voltmeter (DVIM) FUNCLIONc..uueeeeeeveeecieeecieeeesieeeecvaeeasiieaeeans
GetANAIOGAVEIraZECOUNT . .uviiiiiieeiieeeiite ettt e et sbre e e site e s sea e s sabeesstnee s esnnnes
EXAMPLE C CODE ..ciiiiiiiteeeeeeeeiiee e e e e sttt e e e e e e s et e e e e e sennnbeeeeeesesnnnneeeeesenannns

Performance Analysis of the “Bit-Bang” ROULINEScccecvuveevcvuveessienanns 170
USBEE DX DATA EXTRACTOR OVERVIEWccoeccrurerrenneesessnnessesneesssssnesssnsnnes 173

USBee DX Test Pod User’s Manual 9

DATA EXTRACTOR FEATURES ...cetieiereeeeeeeeeitreere e e s esnrere e e s s e s smmneee e e e s s smnneeeeeesenans

BUS TYPES DECODEDveevtteereeteeesteesseesseessseessssessessesssesnsesesssssssessnsesssessssensseens
YOUR TESTING SYSTEM ..uvteeutieeteesuteesreesueeesseessseessueessesessseesssessnsesssseessesssessnseesane
SYSTEM REQUIREMENTS ... eiiittteeeeeesitttteeeesesinbeteeeseeeun e aneeeeeeeesannneneeeeeesansnneeaeens
SYSTEM SETUP .vvveeveenreeeeeeneenn

Installing The USBee DX CD

Installing The USBee DX Data EXtractor CDcccoueeecvveeeecveeescieeesiiienaenns 175

INSEAIIING thE V File VIEWETccccceeeeeeeeeaeeeeeeteeee ettt eeectvaeaa e e 175

Running the Command Line Extractors ..176

Building Your Own Programs Using the API............ccoeoeceveveeieeeciiiiiieeaaeeeen, 176

ASYNC DATA EXTRACTORccooiiiiinnnnniiinissssnneeesisssssssssnsssssssssssssnsssssssssssssnsens 177

ASYNC BUS DATA EXTRACTOR SPECIFICATIONS ..cceeeeiaiirreeeeeeaaairreeeeesesaireneeeesesseesannnes 177
HARDWARE SETUP ...eutteiutiteitesteesteesiteesiteesaseesitesssseeesssesseesseessseesasaesaseesnsesssneens 177
EXTRACTOR COMMAND LINE PROGRAMcoiiiiiiiieeeeaaiieteee e e ettt e e e e e e iiene e e e e 177

Example Output Files
EXTRACTOR API
J0 I =T To o =R 183
DLL Exported Functions and parameterscccceeeeeeevveveeeeeessiiinveeaaeeasinns 183

Extraction Data Format

Example Source Code

PARALLEL BUS DATA EXTRACTORcuuetiiiiiiiiiinnnnttitiiisnnnnnnteeenissnnnnneeeesssnnes 195

PARALLEL BUS DATA EXTRACTOR SPECIFICATIONS
HARDWARE SETUP ...eutieiutiteitesteesteesiteesateesiteesbteessseeesasesbeesbeesaseesaneesaseesaseennneens
EXTRACTOR COMMAND LINE PROGRAMcoiiiiiiiieeeeeiiiettee e et e e e e e eee e
EXAMPIE QULDUL ...ttt e st e e e e st eeentaaesraeaaaens
EXTRACTOR APttt ettt e e e e e e e e e e s nnreeee e e e ennes
DLL filename:
DLL Exported Functions and parameters
EXEraction DAt FOrMQLccccueeeeieeieieeeeiee et

EXAMPIE SOUICE COUE ...ttt e ettt e e e e e s ssvaaaa e e e e e

SERIAL BUS DATA EXTRACTOR eerrsrnnreeeeee et aaaaaeeeeeas 210

SERIAL BUS DATA EXTRACTOR SPECIFICATIONSuuititteeeeeesniteeeeeesesenbeeeeeeesesannennreeeeas 210
HARDWARE SETUP ...iittitete e e ettt e e e sttt et e e e s e sinr et e e e e e saaneeeeeeeesesnnnneeeeeseaannns 210
EXTRACTOR COMMAND LINE PROGRAMveiiiiiiieiiiiiiiiiee e ee e 211
EXTRACTOR AP L.ttt ettt et e ettt e e e e e et e e e e e s nnneeeeeeeennes 212

F0 I =T To o =3RS 213

10 USBee DX Test Pod User’s Manual

DLL Exported Functions and parametersccovueecveeeescvvsesiveeessienenns 213

EXtraction DAtQ FOIMQLeeeeeeeeeeeeeeeeeeeeeeee ettt 215

EXAMPIE SOUICE COUE......cceeeeeeieeeeee et e e et e s saa e s saea e 216

12C DATA EXTRACTORceuuiiiieniiiiienniiiinniiiesssinessinmssssssnsssssssssssssssassssssansssaes 224
12C DATA EXTRACTOR SPECIFICATIONS ..vvveeererreeeieesseesreesnseesureesseesssesesssesenseessseess

HARDWARE SETUP ... ietitetee e ettt e e e s ettt e e e e s s anb et e e e e e seannbeeeeeesesnnneeeeeseaannns
EXTRACTOR COMMAND LINE PROGRAM
EXTRACTOR APL.cuviiiiieeiiteciteetee st e ste e steesiae e s saaeesbaeesbaesbessbeesaseesateasaneesasaenseeens
F0 I =T To o =S 226
DLL Exported Functions and parameterscccceeeeeeevvveeeeeeeseiiiivenaeeeasinns 226

[e Tora o) g WD e [oo /s s Lo | SR 228
EXAMPIE SOUICE COUE ...ttt e e e s caaa e e e e e e eaean 230

SM BUS DATA EXTRACTOR......cccccueeerrriiciinnnnns

SM BUS DATA EXTRACTOR SPECIFICATIONS ..cceeteuuuitreeeeeeanuiereeeeesesasreeeeessean sesnnreeeeas
HARDWARE SETUP ..cuuittieiiiteeeiteeeesireeessinreessaneeesensneeesnseesssnreeesnnneesannnesssnsesessnnes
EXTRACTOR COMMAND LINE PROGRAMccuutieiiiiiieeeniieeeniteeenitteessineesssiseeessabeeesaes
EXTRACTOR AP ..ottt ettt e e e st e s e e snn e s e nr e e snnes
DLL filenames:cccovueeeeevveeecveaeaccnrennn.
DLL Exported Functions and parameterscccoveeecveeeecceveesivrenesiiennnns
EXtraction Data FOrMQLcooee oot

EXAMPIE SOUICE COUE.....ccc..eeeeeeeeeeeee ettt e et aeeeaa s sraea e
SPI DATA EXTRACTORcuueeiiccneericnnessesssnesssssnnessssssesssssssesssssssesssssnssssssanensans 246

SERIAL BUS DATA EXTRACTOR SPECIFICATIONSuuuuuuuenennnnnnnnnsnnssnsssnsssssssssssssssssnnnnnnnns 246
HARDWARE SETUP ...eevttuuiieeeeereetttniieeeeeeesesssnnesesessssnseeeessssssnnnnsesesssssssnnnneesesssssnnnnn
EXTRACTOR COMMAND LINE PROGRAM

EXTRACTOR AP L.ttt ettt ettt e e e e et e e e e e s nnneeeeeeeeanes
F0 I =T To o =S 248
DLL Exported Functions and parameters

Extraction Data Format

EXAMPIE SOUICE COUE ...ttt e ettt e e e s esaaa e e e e e e
1-WIRE DATA EXTRACTOR.....ccccciittenietrnnienrenensensesssnsesssnssssssnssssssnssssssnssssses 256
1-WIRE BUS DATA EXTRACTOR SPECIFICATIONS ...eeevvvvrineeeeereerennneeeeeesrersssnnseseesssnnnnns 256
HARDWARE SETUP ...evvtttuiieeeeereettttieeeeeereesssneesesessseneseeessssssmsnnsesesesssssnnnneesesssssnnnnn 256
EXTRACTOR COMMAND LINE PROGRAMcuuuuieeeieeiiiiiieeaeeeeereennnnneeeeesenennesesesennsnnnnns 256
EXTRACTOR AP .ottt e et ee e e e e e e ee e et e e e eeeseassanaaeseeseesnnens 257

USBee DX Test Pod User’s Manual 11

F0 I =T To o =3 SN 258

DLL Exported Functions and parameterscccceeeeeeevvveeeeeeeseiiieveeaeeeesinns 258
EXtraction DAt FOIMQLcceveveeeeeeeieeeeeeeee ettt e e e eetttee e e e e e evataeeenaaes 259
EXAMPIE SOUICE COUE ...ttt e e e et a e e e e e eanan 260

12S DATA EXTRACTORceeueiirennneirennccereenseerenssessenssssssnssssssnssesssnssssssnssssssnsssssen 265
12S BUS DATA EXTRACTOR SPECIFICATIONS eeeeieeieieeeiieeieieeeieeeeeeeeeeeeeeesesesenen e s e e e e e e e 265

HARDWARE SETUPceoiiiiiiiiiniieiecneeieeieenns
EXTRACTOR COMMAND LINE PROGRAM
EXTRACTOR AP .ottt

DLL flleNQIME: ...ttt e ettt e e e ettt a e e e e st aaaaeaaeeaas 267
DLL Exported Functions and parameterscccoeeeecveeeesvesescieeessiennnns 267
EXtraction DAtQ FOIMQLeeeeeeeeeeieieeeeeeeeeeeeesese st s st s s 269
EXAMPIE SOUICE COU......cc.eeeeeeeeeeeee et e ee e et a e s saa s saea e 269
LOW AND FULL SPEED USB DATA EXTRACTORcccctteeiirmnniinnnnninneannscneannsenes 275
USB DATA EXTRACTOR SPECIFICATIONS ...veeuvveeureeeteesreesreesuseesureesseeensesesssesesseessseess 275
HARDWARE SETUP ...iiietttet e e e ettt e e e s ettt e e e e et e e e e e s mneeeeeeeesesnnseeeeeeeaannns 275
EXTRACTOR COMMAND LINE PROGRAMccruterrieriienieesieesieesireessneenseeeesseeenseessseess 275
EXTRACTOR API276

J0 I =T To o =S 277
DLL Exported Functions and parametersccccueeeeeevveveeeeeessiiivveeaseeasinns 277
EXtraction DAt@ FOrMQtcoeeeeeeecuiiiieeeieeseesiiiieeeeeesesiteee e e e sssistaaaeeeeneaees 279
EXAMPIE SOUICE COUE ...ttt e e ettt a e e et a e e e e e esanan 284
CAN DATA EXTRACTORccooevunnrriiiniissssnnnennsnssssssssnsesssssssssssssssssssssssssssnsssssssss 289
CAN DATA EXTRACTOR SPECIFICATIONS.eeeeteeesuiiereeeeeeaanrreeeeeesesnnreeeeessesssannnseneess 289

HARDWARE SETUPovveeeeieeieseeeneeeeeeneesenenenns

EXTRACTOR COMMAND LINE PROGRAM

EXTRACTOR APttt te st sttt et ste st bestesneesaeesaeentesneesaeesseensesnnesnnanes
DLL filENQIME: ...ttt e et e e e e e a e e e stsaa e s saeaaens 291
DLL Exported Functions and parameters ...

EXEraction DAt FOIMQLcouuuueeeeeeeeeeeiteeeeeeeeeeiiieeeeeeeeettteeeeeeeeesssaeeeaeaes

EXAMPIE SOUICE COUE......cc.eeeeeeieeeeeee et e et e e e etvaeesaa e ssvinae e

12 USBee DX Test Pod User’s Manual

INTRODUCING THE USBEE DX POD

www.ushee.com

USBee

The USBee DX Test Pod is a large sample buffer PC and USB based programmable multifunction
digital storage 2-channel oscilloscope, 16-channel logic analyzer and digital signal generator in a
single compact and easy to use device. It is the ideal bench tool for engineers, hobbyists and
students

Connecting to your PC, the USBee DX Test Pod uses the power and speed of the USB 2.0 bus to
capture and control analog and digital information from your own hardware designs. The USBee DX
takes advantage of already existing PC resources by streaming data over the High-Speed USB 2.0 bus
to and from the PC. This allows the PC to perform all of the triggering and data storing and makes
possible an affordable USBee DX, while pushing the sample storage capabilities orders of magnitudes
beyond that of traditional dedicated oscilloscopes, logic analyzers or signal generators. The USBee DX
Test Pod can utilize available PC memory as the sample buffer, allowing selectable sample depths
from one to many hundreds of millions of samples.

The USBee DX Test Pod can capture and generate samples up to a maximum of 24 million samples
per second depending on the PC configuration. The USBee DX Auto-Calibration feature automatically
reduces the sample rate to ensure accurate and reliable timing, even on systems with slower
processor and USB bus speeds. The USBee DX Test Pod perfectly merged features and functions to
provide exactly the performance needed for hardware and microprocessor designs such as BASIC
Stamp and PIC systems to ensure an affordable and compact unit.

The USBee DX Test Pod does not need an external power supply. The USB bus supplies the power to

the pod, so your PC will be supplying the power. The Pod does, however, require a self powered hub
(not bus powered) if a hub is used between the PC and Pod.

USBee DX Test Pod User’s Manual 13

WARNING

IMPORTANT! - The USBee Test Pod can only be connected to a target circuit which has the same
ground reference level as your PC.

The USBee is NOT galvanically isolated. This mainly concerns systems where the target circuit AND
the PC are plugged into AC power outlets. If your target system OR the PC (Laptop) are battery
powered, there is no issue. If your PC and target circuit have different ground reference levels,
connecting them together using the USBee GND signal can damage the devices.

To ensure both your PC and target system share the same ground reference, do the following:

1. Use polarized power cords for both the PC and target and plug them into the same AC
circuit.

If you use non-polarized power cords or use separate power circuits, the PC and target
system may have different ground references which can damage the USBee, target and/or
PC.

2. Ensure that a GND signal on the USBee is connected to the target ground (and not another
voltage level).

Also,

As with all electronic equipment where you are working with live voltages, it is possible to hurt
yourself or damage equipment if not used properly. Although we have designed the USBee DX pod
for normal operating conditions, you can cause serious harm to humans and equipment by using the
pod in conditions for which it is not specified.

Specifically:

. ALWAYS connect at least one GND line to your circuits ground

. NEVER connect the digital signal lines (0 thru 7, TRG and CLK) to any voltage other than
between 0 to 5 Volts

. NEVER connect the analog signal lines (CH1 and CH2) to any voltage other than between -
10 and +10 Volts

. The USBee DX actively drives Pod signals 0 through F in some applications. Make sure that
these pod test leads are either unconnected or connected to signals that are not also

driving. Connecting these signals to other active signals can cause damage to you, your
circuit under test or the USBee DX test pod, for which CWAV is not responsible.
. Plug in the USBee DX Pod into a powered PC BEFORE connecting the leads to your design.

14 USBee DX Test Pod User’s Manual

PC SYSTEM REQUIREMENTS

The USBee DX Test Pod requires the following minimum PC features:

. Windows® 2000, XP or Vista 32-bit operating system

. Pentium or higher processor

. One USB2.0 High Speed enabled port. It will not run on USB 1.1 Full Speed ports.
. 32MBytes of RAM

. 125MBytes of Hard disk space

. Internet Access (for software updates and technical support)

EACH PACKAGE INCLUDES

The USBee DX contains the following in each package:

. USBee DX Universal Serial Bus Pod

. Set of 24 multicolored test leads and high performance miniature test clips
. Getting Started Guide

. USB Cable (A to Mini-B)

. USBee DX Test Pod CD-ROM

HARDWARE SPECIFICATIONS

Connection to PC USB 2.0 High Speed (required)

Power via USB cable

Test Leads 24 9" leads with 0.025" square sockets
USB Cable Length 6 Feet

Dimensions 2.25"x 1.5" x0.75"

Minigrip Test Clips 24

The maximum sample rate for any mode depends on your PC hardware CPU speed and USB 2.0 bus
utilization. For the fastest possible sample rates, follow these simple steps:

. Disconnect all other USB devices not needed from the PC
. Do not run other applications while capturing or generating samples.

The maximum sample buffer size also depends on your PC available RAM at the time the applications
are started.

USBee DX Test Pod User’s Manual 15

SOFTWARE INSTALLATION

Each USBee DX pod is shipped with an installation CD that contains the USBee DX software and
manuals. You can also download the software from the software from our web site at
www.usbee.com. Either way, you must install the software on each PC you want to use the USBee
DX on before you plug in the device.

To install the software:

. Download the USBee DX Software from http://www.usbee.com/download.htm and unzip
into a new directory. Or insert the USBee DX CD in your CD drive. Unzip the downloaded
file into a new directory.

. From the “Start|Run” Windows® menu, run the SETUP.EXE.

. Follow the instructions on the screen to install the USBee DX software on your hard drive.
This may take several minutes.

. Now, plug a USB A to USB Mini-B cable in the USBee DX and the other end into a free USB
2.0 High Speed port on your computer.

. You will see a dialog box indicating that it found new hardware and is installing the
software for it. Follow the on screen directions to finish the driver install.

. You will see another dialog box indicating that it found new hardware and is installing the
software for it. Follow the on screen directions to finish the driver install.

. The USBee DX Software is now installed.

. Run any of the applications by going to the Start | Program Files | USBee DX Test Pod and
choosing the application you want to run.

CALIBRATION

Your USBee DX has been calibrated at the factory and will not need calibration to start using it. This
section is provided just as a reference in case you want to reproduce the calibration yourself.

Since electronic components vary values slightly over time and temperature, the USBee DX Pod
requires calibration periodically to maintain accuracy. The USBee DX has been calibrated during
manufacturing and should maintain accuracy for a long time, but in case you want to recalibrate the
device, follow these steps. The calibration values are stored inside the USBee DX pod. Without
calibration the measurements of the oscilloscope may not be accurate as the pod ages.

To calibrate your USBee DX Pod you will need the following equipment:

. External Voltage Source (between 5V and 9V)
. High Precision Multimeter

16 USBee DX Test Pod User’s Manual

When you are ready to calibrate the USBee DX Pod, plug in the pod and run the Oscilloscope and

Logic Analyzer application. Then go to the menu item Setup | Calibrate. You will be asked to confirm

that you really want to do the calibration. If so, press Yes, otherwise press No. Then follow these
steps:

. Connect the CH1 and CH2 signals to the GND signal using the test leads and press OK. A
measurement will be taken.

. Connect the GND signal to the ground and the CH1 and CH2 signals to the positive
connection of the External Voltage Source using the test leads and press OK. A
measurement will be taken.

. With the Multimeter, measure the actual voltage between the GND signal and the CH1
signal and enter this value in the dialog box.

. The calibration is now complete. The calibration values have been saved inside the pod.

The analog measurements of your USBee DX pod are only as accurate as the voltages supplied and
measured during calibration.

USBee DX Test Pod User’s Manual

17

18

USBee DX Test Pod User’s Manual

LOGIC ANALYZER AND OSCILLOSCOPE (MSO)

This section details the operation of the Logic Analyzer and Oscilloscope application that comes with

the USBee DX, also known as a Mixed Signal Oscilloscope, or MSO. Below you see the application
screen after startup.

~3UsBee D% Dscilloscope and Logic Analyzer

=1oix]

File Yiew Setup Help

=
=
z
=
=
z
B — 1 1 1
=
=
z
=
=
=
z
=
=
~CH1—-CH2 —
e Otfset iy Difsed
2v 2w
Seconds/Division [Cursors xa oi|
{ e b mow aone aww bw mew ooe wos ow
[l I 12|
Pod Status |~ Acquisition Control Trigger isplay
Tiigger Position xex v [oo7 _|[oov
200K " Momal [Persist 1 [00ns
2%] || Pun Gao AL DB vems %@ [0 }UU”S } yﬁq L EU
- =t & 0oy 0oy
USBes OK [thss =] || @ — [T T 100 ey e [Ev |38
e Min [G647 | 0087
CH1 CH2

The USBee DX Mixed Signal Oscilloscope functions as a standard Digital Storage Oscilloscope
combined with a Digital Logic Analyzer, which is a tool used to measure and display analog and digital
signals in a graphical format. It displays what the analog and digital input signals do over time. The

digital and analog samples are taken at the same time and can be used to debug mixed signal
systems.

USBee DX Test Pod User’s Manual 19

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things

you need to do to view a mixed signal (analog and digital) waveform trace.

20

Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

Connect the CH1 pin on the USBee DX pod to one of the signal wires using the small socket
on the end of the wire. Connect the other end of the wire to your circuit you would like to
test. You can either use the socket to plug onto a header post, or connect it to one of the
mini-grabber clips and then attach it to your signal of choice.

Connect any of the digital inputs O thru F on the USBee DX pod to one of the signal wires
using the small socket on the end of the wire. Connect the other end of the wire to your
circuit you would like to test. You can either use the socket to plug onto a header post, or
connect it to one of the mini-grabber clips and then attach it to your signal of choice.

Run the Oscilloscope and Logic Analyzer Application.

Press the Run button. This will capture and display the current activity on all of the
signals.

You can then scroll the display, either by using the slider bars, or by clicking and dragging
on the waveform itself. You can also change the knobs to zoom the waveform.

You can make simple measurements by using the Cursors area (gray bars under and along
side the waves). Click the left mouse button to place one cursor and click the right mouse
button to place the second. The resulting measurements are then displayed in the
Measurements section of the display.

USBee DX Test Pod User’s Manual

Analog Channels

Maximum Analog Sample Rate [1]
Analog Bandwidth

Input Impedance

Analog Input Voltage Range
Analog Sensitivity

Analog Resolution

Channel Buffer Depth [2]

Volts per Division Settings

Time per Division Settings
Trigger Modes

Analog Trigger Voltage

Cursors

Voltage Display Offset

Time Display Offset

Trigger Position Setting
Measurements

Digital Channels

Maximum Digital Sample Rate [1]

Internal Clocking

External Clocking

Digital Trigger Levels

Digital Trigger Qualifiers
Trigger Prestore

Trigger Poststore

Sample Clock Output
Maximum Digital Input Voltage
Digital Input Low Level

Digital Input High Level

MIXED SIGNAL OSCILLOSCOPE/LOGIC ANALYZER
SPECIFICATIONS

2

24 Msps

40 MHz

1M Ohm/30 pF

-10V to +10V

78mV

256 steps

>200k Samples

100mV to 5V in 6 steps
100ns to 2s in 23 steps

Auto, Normal, Analog and Digital Triggers

Between -10V and +10V

2 Time and 2 Voltage

Up to maximum inputs

Up to available buffer depth
10% to 90%

Min, Max

16

24 Msps

Yes

Yes — through Parallel Decoder
4

Rising Edge, Falling Edge, High,Low
Yes

Yes

Yes

+5.5V

<0.8V

>2.0V

[1] Maximum sample rate depends on your PC hardware CPU speed, USB 2.0 bus utilization and
number of channels selected.

For the fastest possible sample rates, follow these simple steps: 1) Disconnect all other USB devices
not needed from the PC, 2) Do not run other applications while capturing or generating samples.

USBee DX Test Pod User’s Manual 21

[2] Maximum buffer size depends on your PC available RAM at the time the application is started.
Each sample requires 4 bytes of RAM (16 bits for the 16 digital lines and 8 bits each for the 2 analog
channels)

FEATURES

SETUP CONFIGURATION

The MSO can capture 16 channels of digital and 2 channels of analog at the same time. All of the
captured data is streamed over the USB bus to your PC to be stored in the RAM of the PC. In order to
optimize the sample bandwidth you can choose to see only the channels of interest to you.

The configurations available are as follows:

Analog Channels | Digital Channels | Max Sample Rate
0 8 24 Msps

0 16 12 Msps

1 0 24 Msps

1 8 12 Msps

1 16 8 Msps

2 0 12 Msps

2 8 8 Msps

2 16 6 Msps

To select a configuration, click Setup on the menu and select the configuration of your choice. Below
are examples of the application in various modes.

FE

FE

16 Digital-2 Analog Channels 8 Digital-0 Analog Channels

22 USBee DX Test Pod User’s Manual

8 Digital-1 Analog Channels 0 Digital-2 Analog Channels

|SIGNAL NAMES

To change the names shown for a signal, click on the signal name and enter a new name.

|POD STATUS

The MSO display shows a current USBee DX Pod Status by a red or green LED. When a USBee DX is
connected to the computer, the Green LED shows and the list box shows the available Pod ID List for
all of the USBee DX’s that are connected. You can choose which one you want to use. The others will
be unaffected. If a USBee DX is not connected, the LED will glow red and indicate that there is no pod
attached.

If you run the software with no pod attached, it will run in demonstration mode and simulate data so
that you can still see how the software functions.

ACQUISITION CONTROL

The MSO captures the behavior of the digital and analog signals and displays them as “traces” in the
waveform window. The Acquisition Control section of the display lets you choose how the traces are
captured. Below is the Acquisition Control section of the display.

When the MSO is first started, no acquisition is taking place. You
—Acquisition Control — need to press one of the acquisition buttons to capture data.

The Run button is the Run/Stop control. This Run mode
performs an infinite series of traces, one after the other. This lets
you see frequent updates of what the actual signals are doing in

real time. If you would like to stop the updating, just press the
Stop button and the updating will stop. This run mode is great
for signals that repeat over time.

The Single button captures a single trace and stops. This mode is good for detailed analysis of a
single event, rather than one that occurs repeatedly.

USBee DX Test Pod User’s Manual 23

The Buffer Size lets you select the size of the Sample Buffer that is used. For each trace, the buffer is
completely filled, and then the waveform is displayed. You can choose buffers that will capture the
information that you want to see, but remember that the larger the buffer, the longer it will take to
fill.

You can also choose the Sample Rate that you want samples taken. You can choose from 1Msps
(samples per second) to up to 24 Msps. The actual maximum sample rate depends on your PC
configuration and the number of channels that you are using. See the table below for maximum
sample rates for a given channel setting.

Analog Channels | Digital Channels | Max Sample Rate
0 8 24 Msps

0 16 12 Msps

1 0 24 Msps

1 8 12 Msps

1 16 8 Msps

2 0 12 Msps

2 8 8 Msps

2 16 6 Msps

TRIGGER CONTROL

The Mixed Signal Oscilloscope uses a Trigger mechanism to allow you to capture just the data that
you want to see. You can use either a digital channel trigger or an analog trigger. You can not use a
combination of analog and digital.

Trigger Position

~3UsBee DX Oscilloscope and Logic Analyzer S [=TE!

Fle View Setup Help

| Signal ¢

Analog Trigger
Slope

= Analog Trigger
o Level Indicator

Analog Trigger
Channel

v

Analog Trigger

cion [eursors] o

. s wow s e oms B oo wos s
Level Slider 2| g I 151

i Conol sy f e TragerPostion | [P12 ReR1_ i [0 |[o0V

- Ny il

oz) A) | = R (ol 7

oy ot Stopped ¥ wide T vevilow ooy

USBes OK [thes =l || @ ——— TARZK] Max [586v (3837

e S i‘ Min (5687 _|[D0BY

CHT CH2

24 USBee DX Test Pod User’s Manual

For an Analog trigger, you can specify the trigger voltage level (-10V to +10V) by using the slider on
the left hand side of the analog waveform display. A red line that indicates the trigger level will
momentarily be shown as you scroll this level. A small T will also be shown on the right hand side of
the screen (in the cursors bar) that shows where this level is set to.

For an analog trigger, the trigger position is where the waveform crossed the Trigger Voltage level
that you have set at the specified slope. To move the trigger voltage level, just move the slider on the
left of the waveform. To change the slope, press the Analog Trigger Slope button.

You can also specify if you want the MSO to trigger on a Rising or Falling Edge. The following figures
show a trace captured on each of the edges.

~3USBee DX Dscilloscope and Logic Analyzer

ol x|
File ‘iew Setup Help
CH1—CH2—-Trig
i Otfse iy Offse] 5
| af) =] <l
— g | -
— — J
—
= =) =l =l =]
w v |
Seconds/Division [Cursors a ot
s o0 0us w0 008 nons 0 0o snous onous
A - 5]
Pod Status Aci :Itlnnzlé;l:t[nl l{ligﬂz:\a‘ T IEI:;l::S‘ MEK:SHIEIIEI':ZIIS waml “ i i
1234 2] ||| Bun | |j @ hdo P 5 vews || TR o }U'U”S } e EUU
o :
UsBee OK | | Single | [Gueps =] | @ Wljie 1 100w [ty W (5060|380
[T Min [EEIV][0V
CH1 CH2

Analog Trigger Slope = Rising Edge

~3USBee DX Oscilloscope and Logic Analyzer ol x|
Flle ¥iew Sstup Help

CH1 CH2 Trig
ity Oftset] iy Offsef 4

A= =])

= | R
L E]|

—_
== i=l=l| =)

2v 2v 1.0V

Seconds/Division

[Cursors X |
= — e 000 00 00 nns 00 00 o0.0us an.0us
< 2]
RS s e IEus:lay) M;::ulzné:nl: oui e T
124 - R | [0 = & a4 i s s fims | w2 [007 |00V
o o [Vectors 2 (e 8 L
USBes OK [evms =] || ©@ Rl Wide: 1 1000 7w Man [Geev || 369
[.S = Min [£647 |[Do8v
T CHZ

USBee DX Test Pod User’s Manual 25

Analog Trigger Slope = Falling Edge

The Trigger position is placed where the actual signal crosses the trigger voltage with the proper
slope. The USBee DX allows for huge sample buffers, which means that you can capture much more
data than can be shown on a single screen. Therefore you can scroll the waveform back and forth on
the display to see what happened before or after the trigger.

For a Digital trigger, you can specify the digital states for any of the 16 signals that must be present
on the digital lines before it will trigger. Below shows the trigger settings (to the right of the Signal
labels). This example shows that we want to trigger on a falling edge of Signal 6, which is represented
by a high level followed by a low level. To change the level of any of the trigger settings, just click the
level button to change from don’t care to high to low.

Trigger
Digital Trigger e and Logic Analyzer Position 55
Level Settings =1l
==
=tz 3
Elz|z|=
N 1B EE \
Signal |z|=|=
Siara s \|[z]2[=
BEEE 1 — :
BEBE — 1 —
z|z|z|z
BEEE
BEBE
BEBE
| SignsiC = [z|z|z
SiraD = |2 5 [2
BEBE
BEBE

rCH1 CH2—

iy Otse v s 2 Vidiv

Al al| 2] = 20 us/div /\
2 2 E I\/

Seconds/Division [Cursors xa ok |
{ e b mow done aww b mow oos wow oow
| I 12|
. Pod Status | - Acquisition Control Trigger izplay
Tiigger Position xex v1 [007 (oo
00K - " Nomal I~ Persist X1_[00ns
| = s I 7 Vectors %2 |00 }U'U”S } y;fq g% Eg"v
USBes OK [awns =] || @ — [l T 100 ey e [EEv |35
e Min [BBV | 0087
CH1 CH2

The digital trigger condition is made up of up to 4 sequential states of any of the 16 signals. Each
state for a single signal can be high, low or don’t care. This allows you to trigger on rising edges,
falling edges, edges during another signals constant level, or one edge followed by another edge.

The waveforms are shown with a trigger position which represents where the trigger occurred. This
sample point is marked on the waveform display with a Vertical red dotted line and a “T” in the
horizontal cursors bar.

You can use the Trigger Position setting to specify how much of the data that is in the sample buffer
comes before the actual trigger position. If you place the Trigger Position all the way to the left, most
of the samples taken will be after the trigger sample. If you place Trigger Position all the way to the

26 USBee DX Test Pod User’s Manual

right, most of the samples taken will be before the Trigger sample. This control lets you see what
actually happened way before or way after the trigger occurred.

I &

Trigger Position to the Right Trigger Position to the Left

WAVEFORM DISPLAY AND ZOOM SETTINGS

The Waveform display area is where the measured signal information is shown. It is displayed with
time increasing from left to right and voltage increasing from bottom to top. The screen is divided
into Divisions to help in measuring the waveforms.

~3USBee DX Dscilloscape and Logic Analyzer ol x|
Flle ¥iew Sstup Help

| Signal 4

Volts Per Division
Scrollbar

Volts Display Offset
Scrollbar

Volts Display Offset
Click and Drag
Indicator

N[wfuln[a]u |a]] o a]s|ufos

Seconds/Division [Cursors o 2
K| AN 2]
Pod Status) l."ii::s‘ Trigger Posttion "”'?:s‘ e XXl w1 [0ov_ |[oov
roramal | %2 [00rs } R } y;(; .
. T 007 || 00V
Seconds Per Division o Stopped ~ 11008] Mas [sov || 369
Scrollbar Min [E647 || 008V
Waveform Time CHT_CHZ
Scrollbar

USBee DX Test Pod User’s Manual 27

The position of the waveform defaults to show the actual trigger position in the center of the screen
after a capture. However, you can move the display to see what happened before or after the trigger
position.

To Scroll the Waveforms in Time left and right, you can use the scroll bar at the bottom of the
waveform display (right above all of the controls), or you can simply click and drag the waveform
itself with the left mouse button.

To Scroll the Analog Waveform in Voltage up and down, you can use the scroll bar at the left of the
waveform display (one for each channel), or you can simply click and drag the waveform itself by
using the colored bar to the immediate left of the actual waveform.

To change the number of Seconds per Division use the scrollbar at the bottom left of the waveforms.
To change the number of Volts per Division for an analog channel, use the scrollbars at the left of the
analog waveforms. You can also zoom in and out in time by clicking on the waveform. To zoom in,
click the left mouse on the waveform window. To zoom out in time, click the right mouse button on
the waveform window.

The Display section of the screen shows three selections that affect the way the

~Dizplay — waveformiis displayed.
[~ Persist
v “ectors The Wide setting shows the wave using a wider pixel setting. This makes the
v 'wide wave easier to see.
Clear | The Vectors setting draws the waveform as a line between adjacent samples.
With this mode turned off, the samples are shown simply as dots on the display

at the sample position.
The Persist mode does not clear the display and writes one trace on top of the other trace.
The benefits of these display modes can be seen when you are measuring fast signals and want to get
more resolution out of the oscilloscope than the maximum sample rate allows. See the below traces

to see the difference. Each trace is taken of the same signal, but the right one shows much more
wave detail over a short time of display updates.

28 USBee DX Test Pod User’s Manual

B

File Yiew Setup Help

CH1 CH2 Trig
i Offse i Offsed 1

2l Al Al Al E
44 JJﬂ
== == | =]

pa 2y 0.4y

scope and Logic Analyzer

Seconds/Division [Cursors xa ot
03 803N 46T lseSTs_ oons ISt dlegins smams smams
Al | 5]
Pod Status AtqulxlllunZI;;:lml (["ig;':\a‘ T IEK;I;::S‘ Mtﬂiull;lltll:;lli e “ i o
[= & futo | 7 ects s }U'U"S } yﬁq g% ;g:[v
at X
USBe= 0K [eum =] || @ Il o U0 ozmiy W (63 |[3750
Clear Min [731v][00
CH1 CH2
Persist = OFF, Vectors = ON, Wide = ON
~3USBee DX O: scope and Lagic Analyzer ol x|
File ¥iew Setup Help

CH1 CH2 Trig

td Oftse v Oifsa]
SR VR
= =]]
=
—
2y v oy
Seconds/Division [Cursors X oi |
SNNs S0Ns 4WSTns o6OTs 00ns 180 MeGms smams emdses
Al [T | 2]
Pod Status- ~Acquisition Control — - Trigger——_ o - Display— ~Measuiements ——; e Tk
0K =] || € Noml 7 Fersil Ons
R Stop EIE . » [00ns | ¥z [00v |[T01V
o Auta I~ Veclors 00 || | vEToe W
UsBeeOK | | Single | [Tz z] | | @ hlfwide 00 sl Mex |60 || 2697
o - Min [7577][0
CAT__CAZ

Persist = ON, Vectors = OFF, Wide = ON

USBee DX Test Pod User’s Manual

29

MEASUREMENTS AND CURSORS

The main reason for using an oscilloscope or logic analyzer is to measure the various parts of a
waveform. The USBee DX uses cursors to help in these measurements.

~3USBee DX Oscilloscope and Logic Analyzer B =10 x|
File Vien et Help

| Signal 4

:
2

:

:

e
B
:

:

:

:

| SignslC =

Sigral D T
B
El

~CH1 — CH2— Tii
i Dffset] v Offset 2 Vidiv,
al af| o] « 100 us/div
2v 2y

Seconds/Division [Cursors] T X oif
{ T e ares s oaw ks me ums ose s
| I 12|
. Pod Status | - Acquisition Control Trigger izplay
e [o TimgerPastien | [0 e ek v [z7a |37
= Run Gre LI m— | B R e EETEEI e e |
at Stopped v Wik T on 3B5kHz e -35¢
UsBeeOK | | Single | [414sps =] | | @ e— = s TRERT M |57V || 391
Q e Min [£687][D08
CH1 CH2

The X1 and X2 Cursors are placed on any horizontal sample time. This lets you measure the time at a
specific location or the time between the two cursors. To place the X cursors, move the mouse to the
gray box just below the waveform. When you move the mouse in this window, you will see a

temporary line that indicates where the cursors will be placed. Place the X1 cursor by left clicking the
mouse at the current location. Place the X2 cursor by right clicking the mouse at the current location.

The Y1 and Y2 Cursors are placed on any vertical voltage level. This lets you measure the voltage at a
specific location or the difference in voltage between the two cursors. To place the Y cursors, move
the mouse to the gray box just to the right of the scroll bar to the right of the waveform. When you
move the mouse in this window, you will see a temporary line that indicates where the cursors will be
placed. Place the Y1 cursor by left clicking the mouse at the current location. Place the Y2 cursor by
right clicking the mouse at the current location.

In the Measurement window, you will see the various measurements made off of these cursors.

. X1 Position — time at the X1 cursor relative to the trigger position

. X2 Position — time at the X2 cursor relative to the trigger position

. X2-X1 - time difference between X1 and X2 cursors

. 1/(X2-X1) — the frequency or the period between X1 and X2 cursors

30 USBee DX Test Pod User’s Manual

. Y1 Position — voltage at the Y1 cursor relative to Ground for both CH1 and CH2
. Y2 Position — voltage at the Y2 cursor relative to Ground for both CH1 and CH2
. Y2-Y1 - voltage difference between Y1 and Y2 cursors for both CH1 and CH2

There are also a set of automatic measurements that are made on the analog waveform for each
trace. These are calculated without the use of the cursors. These are:

. Max — the maximum voltage of all samples in the current trace for both CH1 and CH2
. Min — the minimum voltage of all samples in the current trace for both CH1 and CH2

USBee DX Test Pod User’s Manual

31

MARKERS

Markers can be placed on the waveform display to indicate to the viewer the occurrence of a certain
event. A marker is small flag in blue that contains text that you define.

To place a marker on a waveform, position the mouse pointer at the location you want the marker
placed and press the middle mouse button.

Left click on a marker to change the marker text. Right click on a marker to delete it. To delete all of
the markers select the menu item View | Delete All Markers. Middle click on a marker to change its

direction (left pointing or right pointing).

Below is a screenshot that includes three blue markers.

& USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Shortuld = | B o)
File View Setup Help
aa|z |
% 2)C — T | |
=lcc — L I nn nr—
| T W W W e 5 of Packe]
BEE
EIEIE W LILLLUN TUMAL L | v
sz
=33
Receiver's Configuration = CY4638 VoIP Demo USB BRIDGE +1.0 = (HW PDC-8267-C)
HEE
EHE
[a[z
—
HBE
z|z(z|z T
BEHE
BEEE
Transmitter's Configuration = CY4638 VoIP Demoa v1.0 = (HW PDC-9373°A - Lithium Batery ~3.9 measured)
R_IBAT -B_IBAT - Trig — =
/Div Offset |/Div Offset| g 1.0vdivy I;OVEN =
|]| 2] Al 20 ubtiiv 20 usjdiv
=) =] - v2
=) [7
el el | =l el
oy oy nay
GREEN = REMOTE IBAT, RED = BRIDGE IBAT
Seconds/Division [Cursors T Xt 7 off
[s s o o 10505 2050 e o
“ 3
Y S| L]
Pod Status | - Acquisition Control Trigger | Display Measurements
Tiigger Postion X2 Y1 (027 _|[168V
1| @ Homal
wE - pun 120K]| € e [kl i F:Z’;‘:S l o vz [2507 |[acey | Pp
at I Wi 2 [mae | V2T 22w | 22w
usBeeOK | | Single | [Msps = —_— TR2XT) M [2737 || 008V
@ Clear Min [0B3V [07V
J CHT__CHZ

Use the menu item View | Show Marker Labels to turn on or off the display of the text part of each
marker. If the labels are off, only a small blue arrow is displayed at the marker position. The labels
must be shown to change the text, change direction, or delete that marker.

32 USBee DX Test Pod User’s Manual

ANNOTATIONS

Text based annotations can be added to the display that can help document a particular capture.
There are three annotation lines where text can be added. These lines are just below the digital

waveforms and the analog waveforms.

To change the annotation text, select the text box and type the text you want to appear.

You can turn on or off the annotation text lines by using the menu item View | Show Annotation Text

Boxes.

Below is a screenshot that shows the three annotation text lines below the waveforms.

& USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Shortuld [E=EEE =)
File View Setup Help
|
s]
LIl nn nr—t
(T T R R R AR TR AT i of Packe]
L Ty T
Recsiver's Configuration = CY4638 VoIP Demo USB BRIDGE v1.0 — (HW PDC-8267-C)
HEEE
BEEE
I EIEIERE]
s | SPH1 = R
TRMOS %[z |3
z|z(z|z T
HEHE
HEEE
Transmitter's Configuration = CY4638 VoIP Demo v1.0 = (HW PDC-9373°A - Lithium Batery ~3.9 measured)
R_IBAT -B_IBAT - Trig — =
/Div Ofset |iDiv Offset| 3 1.0y I;OVEN =
] I 20 ubdiv 20 us/div
A4 j Y ¥2
=) [7
el =l | =l
oy oy nay
GREEN - REMOTE IBAT, RED = BRIDGE IBAT
Seconds/Division [Cursors T x o]
saus 205 sz o e totaus 2600 e o
« S
| Il ey 12
Pod Status | | Acquisition Contral Trigger | Display Measurements
Tiigger Pestion R2x1 vi_[027][16w
21| | # Homal o
am - pan |[20K =1 || € e [kl | ;:e’st‘s‘ l 75 2 250 [0 | PD
at Wi 2 [mae | V2T 22w | 22w
UsBee 0K | | Single | [SHems = I — TR Max 2790 || 0.08V
@ Clear Min [083V 07V
—J tHT__cnz

ANALOG CHANNEL BACKGROUND COLOR

The background of the analog channel screen can be set to white or black using the View | Analog

Background White or View | Analog Background Black menu items.

USBee DX Test Pod User’s Manual

33

ANALOG CHANNEL SETTINGS

The analog channels can be assigned a text label to differentiate them on the display. To change the
channel label, click on the label and type in the new name.

By default, each analog channel is set to display the measurements in Volts where 1V is shown as 1V
on the display. Sometimes the measurement might actually mean a different thing than voltage. The

menu item Setup | Analog Channel Settings lets you specify the units of measurement as well as a

scale factor.

Below shows the default setting for the analog channels showing a gain value of 1, offset of 0 and

units of Volts.

3 Analeg Channel Settings

S

CH 1 Units
CH 1 Scale Factor
CH 1 Offset Factor

CH 2 Units
CH 2 Scale Factar
CH 2 Offset Factor

= B

<

=1

-10vV
ov

+10V =

=10V
ov
+10V

-10.0V

0.0v Cancel
10.0V

Redraw
‘W aveforms

-10.0V
0.0v
10.0V

Below shows a setting of mA with various gains and offsets. Instead of displaying the actual value
measured in volts, the display will show the scaled value in the new units.

B3 Analeg Channel Settings

CH 1 Unitz
CH 1 Scale Factor
CH 1 Offzet Factor

CH 2 Units
CH 2 Scale Factor
CH 2 Offzet Factor

|

=
o]
]

g
=1

|

=
o]
]

ra
=

-10V
ov
+10V

-10v
ov
+10V

Ok
0.8

i

4. 0mA Cancel
T.2mi

Redraw
W aveforms
-1.2mA
2. 0mA
5.2mA

34

USBee DX Test Pod User’s Manual

|ANALOG GRID LINES

To turn on or off the grid lines in the Analog display window, use the menu item View | Analog Grid
Lines. Below shows the grid lines on and off.

R
Wl |ow

=l

==l e=li=]

JJJJd

4 USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Short.uld =
File View Setup Help
=
(5 a] —
| SPH1 I 11— 1 111110 111
| TR MO0S|_=(= (=]
TRMIS0N 2|52 (3| 1
BEEE!
ulm|nls]

_IBAT - B_IBAT Trig
Offset |Div Offset

=1

ENEIENE]

0.32ms 0.32mé 4.42meé

GREEN = REMOTE IBAT. RED = BRIDGE IBAT

Transmitter's Configuration = CY4638 VoIP Demo v1.0 = [HW PDC-9373-"A - Lithium Battery ~3.9 measured)

B

JJJJj

ENEENENE]

N3Zmé 032m4 @42mh

Seconds/Division [Cursors 2 s
4 5
J J J < 2]
Pod Status Acquisition Control (T:"gNg;;\a' T ’Eu;ulay . Mx;;sulemenl: P “ TR ERES
[T pun |[20R =] || 2 Rl Il || e o [T5%6s | 2 | 35w | 17w | PD
7 wids = \stz | V2T [40md || 20mA
USEeeDK Single EMSDS - —_— 1A<2K1] Max | 4.88mA || 20ma
Clear Min [4.2mé || 1.95mA
CHT__CHZ
4 USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Short.uld =
File View Setup Help
EEIEIE]
—I-[z[=
a|a|ar —
| SPH1 T I —
| TRMOSI z|z|z(z
TRMED = [z = =1 o ba——d
BEEE
DEDE S —

0.32maAMdiv
8 us/div

set |/Div Offset| g

(=i =l =]

=

GREEN = REMOTE IBAT, RED = BRIDGE IBAT

Transmitter's Configuration = CY4638 VolP Demo v1.0 = [HW PDC-9373-"A - Lithium Battery ~3.9 measured)
R_IBAT [B_IBAT [Trig
Div Off:

Seconds/Division [Carsors 2 o
145.3us 153.3us 161.3us. 185.3us. ATT.3us 85. 3us 153.3us 201.3us. 208.3us
‘ ,
J J J <0 2]
Pod Status | | Acquisition Contral (r:n;:lg;r;al e ’Elsslay‘ Mt::ulement: o] o e
s pun | 20K]| 2 A [kl Tl oes o —[%6ws | 2 | aome | 1w | PD
7 wide T on \snﬂkHz | YRYT [40mé | 20mA
LISEeeEIK Single | B MSDS = — PG Max [488mA || 20mh
T Min [22m || 195mA
THT_CHZ

USBee DX Test Pod User’s Manual

35

BUS DECODING

The USBee DX Logic Analyzer and Oscilloscope has a power embedded bus decoder feature that

allows you to quickly analyze the contents of embedded communications captured by the pod.

 BUS SETUP

Click here to configure
the bus

Fle view S

To setup a single line on the waveform display as a bus, click on the white box to the left of the signal
name. The Channel Settings dialog box will appear as below.

. Channel Settings

Signal 0
— Bus Definition
—Buz Type
& Gensic pos 5-|FEDEBA98?854321D
Cuss SRl el o o
 CAN " SMBus
2c 125
 ASYNC " Serial
= 1w/ire " Parallel
—Walue: Format
@« 0ff " Decimal
 0On % Hex
r— Trigger Setting:
Find z|z|z|z|z|z|z|z|z|z|z|z|z|z|z|=|
Trigger Then z|z|z|z|z|z|z|z|z|z|z|z|z|z|z|z|
Settings
hen z|z|z|z|z|z|z|z|z|z|z|=|z|z|z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|=|

36

USBee DX Test Pod User’s Manual

Select which bus you would like displayed on this line using the Bus Type radio buttons, select the
required channels for the given bus type, and click OK. Below is an example of a setup for an 12C bus.

. Channel Settings x|
12C12
— Bug Definition
B5 T FEDCBA9S8 76543210

 Geneic O PSA2

~use C sp SO I 1 o o
ConC s scl. o (oo |
& |2c oz
 ASYNC " Serial
 1wfire " Parallel

Show ACKs Faormat Drelirniter Contents
 Acks ON " Decimal Comma o Al
& acksOFF | % Hex % Space " Data Only

r— Trigger Setting:

Find =|=|z|z|z|z|z|z|z|z|z|z|z|z|z|=|

Trigger Then =|-|z|z|z|z|z|z|=z|z|z|z|z|z|z|z|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|=|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|=|

Once set, you see the bus identifier to the left of the signal name on the main screen.

Fle view Detup F

Bus Type

Each bus is renamed with the bus type followed by a number. This allows you to have many of the
same types of busses, yet uniquely identify them in decoder listings.

USBee DX Test Pod User’s Manual 37

DECODING BUS TRAFFIC — CLICK AND DRAG

Once a bus is defined you can capture data as usual. You can then scroll and zoom to find the area of
interest on that bus.

To decode a portion of the bus traffic, simply Right-Click and Drag across the waveform you want to
decode. When you let go of the mouse button, the selected section of traffic will be decoded into the
decoder window as shown below.

=3USBee DX Oscilloscope and Logic Analyzer o] 3
File View Setup Help

z|z|z|>
HEBE
Z|Z|Z|Z
HEBEE
Z|Z|Z|Z
Z|Z|Z|Z
DE GGG R T I Ne Ny
Z|Z|Z|Z
HERE
HEBE
Z|Z|Z|Z
HEBE
zlzlz|z T A
HEBE LALILL
z @ USBee DX Decoders =lolx|
—cm CH2—T) Print Save Selectal Copy
i Sffsa i STfse) 3 | o —— [0 [a] |
. -E.780us, IzC-1Z, [&] A0 Wrice 00 [P] —
r‘ 21%8.280us, IZC-1Z, [&] AL Read Ol E& 00 00 7F E4 F& D2 FD 75 81 07 0Z 01 00 20 [P]
2y v |1
Seconds/Division [Cursors i [E |
(;I:J:Ll -6 f2ms 4 f2ms 2 f2ms £23 28us 1.38ms. 3.38ms 5.38ms. 7.38ms 9.38ms.
| I 3
~Pad Status - Acquisition Contiol — Trigger - Display
Trigger Pastion R2xi Y1 [0 [0
- o
S fun | 10005 =] Nomal LT P K1 [00e N5 oo oo
] Q@ (a0 T | [V \ectars %2 [00ns I G T
UsBe=OK | | Single | [7Msps = QP e | | P Wi] o = Max | 7.667 || 4.067
@ T Min [73r7 |00
THTCHZ

You can then scroll and zoom to see a different portion of the capture and decode a different section
of bus traffic in the same way. You can decode up to 4 different sections and each section will display
in its own window with matching color highlights.

38 USBee DX Test Pod User’s Manual

~3USBee DX Oscilloscope and Logic Analyzer o [=[3 |
File W%iew Setup Help

Signal 4

@ USBee DX Decoders
Print Save Select Al Copy

¥ Decoded Transactions 2

183 469ms, Iz0-12, [5] A0 Write 00 [P]
183.79zms, IzC-lz, (5] AL Read 80 0L BE 00 00 32 3z 32 32 3z 32 32 32 32 3z 32 [P]

K]

¥ Decoded Transactions 1 i =
BB 60| =5 750ms, T20-12, 181 80 Wrive 00 (P1
T ! —| 318.250us, I2C-12, (8] AL Read 80 Ol B6 00 00 32 32 32 32 32 32 32 32 32 32 32 [P]
<

Pod Status | - Acquisition Ct

1234 = Fun lﬁ ;I

USBee OK Single | [4 b= -
S ew tn
CH1 CH2

When you click on the text portion of the decode window, the main waveform screen will move to
make sure that the decoded section for that window is displayed.

Once the decoded text window contains the data you want to see, you have the option to use the
menus to print that data, save it to a text file, or select it and copy it to the clipboard for importing to
other programs such as Excel.

DECODING BUS TRAFFIC — MULTIPLE BUSSES

You can also decode multiple busses at the same time and get the traffic displayed in chronological
order from the different busses.

First place the X1 and X2 cursors around the section of time you want decoded. Then choose the

menu item View | Decode Busses Between Cursors. The decoder will then decode all busses defined,
extract the data for each bus and interlace all data so that each transaction is listed chronologically.

USBee DX Test Pod User’s Manual 39

. USBee DX Decoders : =10l x]

Print Save Select Al

Copy

4 Decoded Transactions 1 _ 18l x|
N

| -3.095ms, Izs-4,
Parall

- IZC-12
218.250us, IEZC-1E
£.61%ms, Parall
14 331m=s, Parall
£3.043m=, Parall

D0 00 0O 00 00 00 -]
el-5, 0000000000000000

, [8] A0 Write 00 [P]

, [8] A1 Read 80 0L E6 00 0D 32 3z 32 32 32 32 32 3z 32 32 32 (D]
el-5, 000000000000 0000

el-5, 0000000000000000

o]
el-5, 0

GENERIC BUS SETUP

Although not decoded in the decoder windows, you can combine multiple DX signals into a single line

on the waveform display using the Generic Bus setting.

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings =l

Bus0

— Busz Definition
—Bus Tupe

o i e
CusT e sinel I (T
 CAN 7 SMBusg
C2c 125
 ASYNC " Serial
7 14wie 7 Parallel

FEDCEBASS®7ES43 210

W allie: Farmat
 0ff " Decimal
& 0On & Hex
— Trigger Setting:
Find =|-|z|z|z|z|=|z|z|z|z|z|z|z|=|=|
Trigger Then z|-|z|z|z|z|z|z|z|z|=|z|z|z|=|=|
Settings
Then =|z|z|z|z|z|=|z|z|z|z|z|z|z|=|=|
Cancel |
Then =|z|z=|z|z|=z|=|=|=z|=z|=|=|=|=z|=|=|

The resulting waveform shows the signals 0 through 6 on a single line of the display and shows the
value on the waveform for those signals.

40

Buz0

USBee DX Test Pod User’s Manual

| CAN BUS SETUP

The CAN Bus Decoder takes the captured data from a CAN bus (11 or 29-bit identifier supported),
formats it and allows you to save the data to disk or export it to another application using Cut and
Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The CAN Bus Decoder connects to the digital side of your CAN bus transceiver and only needs to
listen to the receiving side of the transceiver (such as the RxD pin on the Microchip MCP2551 CAN
bus transceiver chip). Use signal 0 as the RxD data line and connect the GND line to the digital ground
of your system. Connect these signals to the CAN bus transceiver IC using the test clips provided.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

&, Channel Settings x|

Signal 0
— Bus Definition
Frame1
 ho Bus pas EAr‘“:h“jataFEDEBASB?85432‘ID
Cuse O spl e
 SMBus
20 25

 ASYNC " Serial
7 14wire " Parallel

Bit Rate [bps] I 2R0000 Hin D [hex) ID a0 [hex] IFFFFFFFF

Faormat Delimiter Show &ll
 Decimal " Comma & Al Fields
& Hex ' Space " Data Only

r— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|z=|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

0K
Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|z| 4|

Cancel
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 41

On the above dialog box, select the CAN data signal, what speed the bus is operating at, what filter
value for the ID you want (if any), and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

~:USBee DX Oscilloscope and Logic Analyzer [0 x|
File Wiew Setup Help

 LLILLLLNLRT LI

===
T|z|=|=
Sig z|z|z|=
CGan | CAN3 Tl-l=|= B 1 T
Sgnald _E|E[E|T
T|Z|E|Z ey
iai
z|z|z|= r
=tzfafg Print Save SelectAl Copy
4 Decoded Transactions 1 =] 5|
-166.667ns, CAM-3, 11-hitID:123 RTR:0,Concrol:04,Data:lZ,&4,56,75,,,,, CRC: 0FAD, ACK: 0 . ot
1o
 Pod Status B
v
1234 - 4
o] i (AL G
UsBee0K | | Single | [12Msps = @ st d I | | ide I TRZRT Max
-] Clear Ll -

42 USBee DX Test Pod User’s Manual

|USB BUS SETUP

The USB Bus Decoder decodes Low and Full Speed USB. It does NOT decode High Speed USB. To
decode Full Speed USB, the sample rate must be 24Msps, meaning you must sample with just 8
digital channels only. To decode Low Speed USB, you can sample as low as 3Msps.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

Connect two of the DX digital signals to the D+ and D- of your embedded USB bus, preferably at the IC
of the USB device or the connector that the USB cable plugs into.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings : x|
— Bug Definition
L T FEDCBASS8 76543210
s sz OFi
 spi s 0 o o o Y
Cow Coms ovtns o o o
[l 25

 ASYNC Serial
1 wire Parallel

LISE Address I Endpaint I

—Speed SOF: Format Drelimiter Contents
 Low S0FsOM | © Decimal " Comma & Al
& Full & SOF:OFF | & Hex ' Space " Data Only
— Trigger Setting:

Find =|=|z|z|z|z|z|z|z|z|z|z|z|z|=|z|
0K
Trigger Then =|-|z|z|z|z|z|z|z|z|z|z|z|z|z|z]| 4|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 43

On the above dialog box, select the DPlus and DMinus signals, what speed the bus is operating at, if

you want Start of Frames (SOF’s) displayed, and what output format you want the traffic. You can

also specify a specific USB Address or Endpoint you want to see. All other transactions will be filtered

out. Leave the fields blank to see all transactions.

Then when you click and drag (with the right mouse button) on the waveform screen on that

waveform, the bus traffic will be decoded as in the following screen.

W USBee DX Decoders P[] 5]
Print Save SelectAll Copy
M Decoded Transactions 1 =10l x|

78.485us, USE-1, SETUP
78.83lus, USB-1, IN
78.878us, USE-1, OUT

124_8z0us, USE-1, SETUP
124 863us, USE-1, IN

187 836us, USE-1, SETUR
187.887us, USB-1, IN

185.20lus, USE-1, SETUR
188 250us, USE-1, IN
183.29%us, USE-1, OUT

185.67%us, USE-1, SETUR
188 80zus, USB-1, I
182 878us, USE-1, T
188 965us, USB-1, IN
189.031lus, USE-1, OUT

207.128us, USE-1, SETUR
207.174ns, USE-1, IN
207.225us, USE-1, OUT

207.697us, USE-1, SETUP
207.74lus, USE-1, IN
207.786us, USE-1, OUT

209 436us, USE-1, SETUP
205 4&1lus, USE-1, IN
209.571us, USB-1, IN
205 66Zus, USE-1, IN
209.807us, USE-1, OUT

u

z10.126us, USE-1, SETUR
710.17zus, USE-1, IN

210.299us, USE-1, SETUP
z10.34Zns, USE-1, IN

EndPoint:

EndPoint:

EndPoint

EndPoint

EndPoint:

EndPoint:

EndPoint

EndPoint:

EndPoint

EndPoint:

EndPoint

EndPoint

EndPoint:
EndPoint:

EndPoint:

EndPoint

EndPoint:

EndPoint

EndPoint:
EndPoint:

0

a

0

0
0

0
0

0

a

coaoca

0

0

=

sooaa

0

0
0

GET DESCEIPTOR DEVICE Lengch:64DATAD S0 06 00 01 00 00 40 00 A4CK
DATAL 12 0L 00 01 FF FF FE 40 47 05 31 21 03 00 00 00 00 0L ACK
DATAL ACK

SET_ADDRESS G6DATAD 00 05 06 00 00 00 00 00 ACK
DATAL ACK

GET DESCRIPTOR DEVICE Length:18DATAD 80 06 00 01 00 00 12 00 ACK
DATAL 1z OL 00 01 FF FF FE FF FF FE FF FF FF FF FF FF FF FF FF FF FF FF EF

GET DESCEIPTOR CONFIG Lengch:SDATAD 80 06 00 0Z 00 00 03 00 ACK
DATAL 03 02 D& 00 01 01 00 80 3%
DATAL ACK

GET DESCEIPTOR CONFIG Lenguh:ZSSDATAD 80 0F 00 0Z 00 00 FF 00 ACK
DATAD 86 0z 40 00 00 07 05 06 0Z 40 00 00 07 05 88 01 10 00 01 07 05 08 OL
DATAL OF &1 0% 40 00 0A 07 05 2 0Z 40 00 00 07 05 0z 0Z 40 00 00 0F 05 24
DATAD 89 0L 10 00 01 07 05 09 01 10 00 0L 07 05 8A 01 10 00 01 07 05 OA OL
DATAL ACK

GET DESCRIPTOR DEVICE Length:18DATAD 80 06 00 01 00 00 12 00 ACK
DATAL 1z 0L 00 01 FF FF FE 40 47 0§ 3L ZL 03 00 00 00 00 0L ACK
DATAL ACK

GET DESCRIPTOR CONFIG Length:9DATAD 80 06 00 02 00 00 09 00 ACK
DATAL 03 0Z DA 00 01 01 00 80 32
DATAL ACE

GET DESCRIPTOR CONFIG Length:234DATA0 80 06 00 02 00 00 EA 00 ACK
DATAL 03 02 DA 00 0O 01 00 50 32 03 04 00 00 00 FF FF FF 00 03 04 00 01 0D
DATAD 86 02 40 00 00 07 0S5 06 0Z 40 00 00 07 05 88 01 10 00 01 07 05 08 OL
DATAL 05 81 0Z 40 00 D& 07 05 82 02 40 00 00 07 05 0Z 02 40 00 00 07 05 84
DATAL ACK

2ET_CONFICURATION 1DATAO 00 03 O 00 00 00 00 00 ACK
DATAL ACK

SET_INTERFACE Alt Setting:0 Interface:ODATAQ 01 OB 00 00 00 00 00 00 ACK
DATAL ACK

FF FF FF FE

10 00 01 07
0z 40 00 00
10 00 01 AC

FF FF FF 00
10 00 01 07
02 40 00 00

44

USBee DX Test Pod User’s Manual

12C BUS SETUP

The 12C Bus Decoder takes the captured data from a I12C bus, formats it and allows you to save the
data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The I°C Bus Decoder connects to the SDA and SCL lines of the I°C bus. Use one signal as the SDA data
line and one signal as the SCL clock line. Also connect the GND line to the digital ground of your
system. Connect these signals to the I°C bus using the test clips provided.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings x|
12C12
— Bugz Definition
B T FEDCEB A998 76543210

" Geneic P52

" USE 5Pl St .-

Com o C o scL. ol o
@ |2C s
 ASYNC Serial
1 wire Parallel

Show ACKs Faormat Delimiter Contents
ks ON Decimal Comma Lo
& acksOFF | % Hex * Space " Data Only

— Trigger Setting:

Find z|=|z|z|z|z|z|z|z|z|z|z|z|z|z|z|

Tigger Then =|-|z|z|z|z|z|z|z|z|z|z|z|=|=|=|

Settings
Then z|z|z|z|z|z|z|z|=z|z|z|z|z|z|z|z|
Cancel |
Then z|z|z|z|z|z|z|z|z|z|z|z|z|z|z|z]|

USBee DX Test Pod User’s Manual 45

On the above dialog box, select the SDA and SCL signals, what portions of the transaction packet you

want to see, and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that

waveform, the bus traffic will be decoded as in the fol

SBee DX Oscilloscope and Logic Analyzer

File View Setup Help

lowing screen.

=

T E|E |2
zz|z| =
BEEE
T\ Z|Z|Z
Signald E|E|Z|E
T E|E |2
DGR R R TRTREI T i T
BEEE
Z|Z|Z|=
ZE|E D
zz|z| =
BEEE
HEHE -
T E|E |2 JILALILL
@ USBee DX Decoders

1
£
-

~Ti Frint Save Select Al Copy
& Decoded Transactions 1 =10) x|
S, T e T =l
318 Z80us, IZC-12, [8] Al Read 01 E6 00 00 7F E4 F& D& FD 75 &1 07 02 01 00 80 [P]

T
z
.L

~CH1 CH2—
i O setf Widiy Offs
2V 2y 1

Seconds. n [cursors a ofi|
5ams amms amms nass 1 3 30ms 5 3ms 7 ms 5 30ms
I | 5|
Pod Status | | Acquisition Control —| - Trigosr Display
Trigger Position w2 w1 [0.07 0
[Foo0E =] | | & Homa [Persst %1 [0ns
124 Fun £ duto 2| | 7 Vectars Er | Y;(?” gg:’; g'g
at
USBz2OK | | Single | [ameps =] || @ Stupped ' Wide I TAERT Max |7667 || 4067
ﬂl Min [7977 _|[00¥
CH1 CHZ

46

USBee DX Test Pod User’s Manual

ASYNC BUS SETUP

The Async Bus Decoder takes the captured data from an asynchronous bus (UART), formats it and
allows you to save the data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test

clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Async Bus Data Extractor uses one or more of the 16 digital signal lines (0 thru F) and the GND

(ground) line. Connect any of the 16 signal lines to an Async data bus. Connect the GND line to the

digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings

Signal 0

— Bus Definition
 Framel
" NoBus
 USE
AN
20
& ASYNC
= 1wire

 PS/2
5P|
 SMBus
25
 Serial
" Parallel

Baud F ate I gE00

Aszpnc Channelz

Buytes Per Line I 16

FEDCEBASS8 76643210

L | N

Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

—Data Bit Parity Format Drelimiter
(ol 3 o 0ff Decimal " Comma
7 " Even & Hex ' Space
(G| Odd ASCI " None
(o] Mark
" Space
— Trigger Setting:
Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|~|
Ok
Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|-| 4|
Settings

Cancel |

USBee DX Test Pod User’s Manual

47

On the above dialog box, select the channels you want to observe. Each channel can be attached to a
different async channel. Also enter the baud rate (from 1 to 24000000), how many bytes per line you
want output, the number of data and parity bits, and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

=

File Wiew Setup Help

dsyne| Asyncd = -|=|Z -IFIIIIIFILHI\llHIIILIIllIlm\UfIILHUIIIILIIILIHLI\LIIII Fl\\ll'II\ll\lﬂILl\\IHJFIIIFIIILIIIILFIIU'IIF[IIUILILI\lIII 1011 QT
=z =z — T
AR Bl & UsBee DX Decoders. —1af x|
EEEE "

ETEENEEEE Print Save Seleck Al Copy
B B[S pecoded anssctone JRT=EY
T|Z|Z |- 5
T|T|Z)2 MMM || -1.56%0s, Async-0, CHO 6F 6B 65 6E 20 0D 4B &F 20 73 79 6B 63 20 46 &F
15.101ms, Asyne-0, CHO 75 GE 64 OD 41 43 4B 20 4F
o|z|a|a —
HEEEC - E
z(z|z|z — L 4 7
z(z|z|z
| SignalC_=|E[=|®
SignalDl) |2 | = | ©

=z |z o -
BEEEC.

r CH1 CH2—-Trig -

iy Dffset| iy Otfsetl @ 2 Vidiv,

=] =] | E| E ﬂ b msidjv
2v 24 1o

Seconds/Division [cursors xa 0ff
-13.67ms -8.6Tms -367ms 1.33ms £.33ms 11.33me 16.33ms 1.33ms. 26.33ms
4 »
CEE—— ...

Display

i~ Pod Status - ~Acquisition Contral Trigger

d Tiigger Pasition 21 ¥i_[oov ooV

T fun | 200K =] | | Nomal Lyl | persit X1 S e T |

| at oo ML S e £ | <z —|ow
Stopped

USBee DK single | [T =] | | @ el s ! TARERT] Max [031V | 1097

3 Clear A T

48 USBee DX Test Pod User’s Manual

PARALLEL BUS SETUP

The Parallel Bus Decoder takes the captured data from a parallel bus, formats it and allows you to
save the data to disk or export it to another application using Cut and Paste. The Parallel Bus decoder
is also a way to capture the data using an external clock.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Parallel Bus Data Extractor uses the 16 digital signal lines (O thru F), the GND (ground) line.
Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

&, Channel Settings x|

r~ Bus Definition

_(F'[arITI?Bus = P5/2 FEDCEAS9S8 7E5 4321
s oot SIS M
CoN Covms | Cookanl el
cax 1z

 ASYNC " Serial
7 14wire * Parallel

ButesiLine I 16

— Clock — Sample Edge Format Drelimiter
& Clock On ' Rizing " Decimal " Comma
" Clock Off " Faling & Hex ' Space
r— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|~|
0K
Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|-| 4|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 49

On the above dialog box, select the channels you want to include in the parallel data bus. You can
also use any one of the 16 digital signals as an external clock. Choose if you want to use the external
clock signal, the external clock edge polarity, how many bytes per line you want output, and what
output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

5Bee DX Dscilloscope and Logic Analyzer Py =] 3}
File Wiew Setup Help

TLP LTI LTLPL PP LU LT LA PP LU L L LU LU LT LILPLPLPLT T LLTLTLTLrLrLrLrLr
gy Ny RNyl gy Ny RN Ry NSy Ny Sy Sy Sy Ay Ny By Ry E

| Signal4

Signal 5

Farzlel| Paallel8 2|3 |@
k] el USBee DX Decad
—Tetets ee DX Decoders
lElzlE Print Sove Select Al Copy
oo slslslz o
SgnaD =]z |z |z
etets 5 14 1B 1C 1b LE IF 20 21 22 23 24 25 26 27 28 -
.500us, S zA 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38
ajieala 250us, Parallel-8, 33 3A 3B 3C 3D 3E GF 40 41 42 43 44 45 46 47 48

.000us, Parallel-8, 79 74 7B 7C 70 7E 7F 00 01 0Z 03 04 05 06 07 08
S00us, Parallel-8, 03 0A OF OC 0B OF OF 10 11 12

~CH1 CHZ2— Trig 000us, Parallel- a 4% 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 &6 57 §8

i Dffset widiv Ozt @ S00us, Parallsl-8, 59 SA 5B SC SD 5B 5F 60 61 G2 63 64 65 66 67 63
1 .7E0us, Darallel-8, €9 €A 6B &C €D 6E &F 70 71 72 7% 74 75 7€ 77 7%
1.0V

K| oz
Seconds/Division [Cursors X oif
’7 567 1hus. -37 Fhus. -17.25us. 2.75us 1 .Thus 41 Fhus. 62 Fhus. &1 Thus. 107 Fhus
4 »
[| [}
. T Displ Ferall Lefe and Righl
Pod Status - - Acquisition Control ;[_‘IIQBEI T Display per] pa: uUII |u.eft an Ruwguht,f
- 200K Nommal) —| [~ Porsist 21 [00e N v 0w T
| Ui & Aut ¥ Wectors %2 |00ns ‘ | v2iao T
USBes 0K, Single AMsps = e Stopped ¥ \Wide T [00ns TR Mk (0257 I
Clear Min [0.087 || 018V
CH1__CHZ

50 USBee DX Test Pod User’s Manual

1-WIRE BUS SETUP

The 1-Wire Bus Decoder takes the captured data from a 1-Wire bus, formats it and allows you to save
the data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The 1-Wire Bus Data Extractor uses any one of the 16 digital signal lines (0 thru F), the GND (ground)
line. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings

— Bus Definition

prarec] FEDCBASS8 76543210

" MoBus = PS2 D ata Sigral
" UsB Pl ata Sigrial 0 I o

 CAN " SMBus
12 s

 ASYNC Serial
[l " Parallel

Farmat Delimiter Contents
" Decimal " Comma o Al
' Hex ' Space " Data Only

— Trigger Setting:
Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|z|
0K
Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|z| 4|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 51

On the above dialog box, select the signal running your 1-Wire protocol. Choose if you want to see

just the data or all information on the bus and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that

waveform, the bus traffic will be decoded as in the following screen.

52

ee DX Oscilloscope a

File View Setup Help

| SignalC

z(z|z|=
HEEE
[1nie | Twire2 ~[-Z|a e
z(z|z(z
Signd 4 =|=|=|2
Signal 5 z[z|=z=|z USBee DX Decoders gl x| fF———
T[E[E[E— Frick Save SelectAl Copy
z(z|z(z
Decoded Transactions 1 ol x|
| 1.03lmc, 1mire-z, ££ £5 Lk = |

Signal D
m T

rCH1 CH2 —
i Otfset]Widy Difss
2y 2y

2 Vidiv

2 msidiv|

Seconds/Division [Cursors
[
<

USBee OK Single

4Msps >

Stopped
Q ——

5.36ms -436ms 2.36ms
~Pod Status| - Acquisition Control Trigger - play
Trigger Position
l__Izun K - & Normal I Persist
1234]‘ Faun ¢ Auto Y [V Vectars
= ¥ Wide

Clear

xa
-357 7hus 1 fidms 3 B4ms. 5 B4ms. 7 64ms. 9 64ms. B
T 221 hal 0.0 0oy
[0 | e Joov |[007
o ‘ 21| 0.0V 0.0

TARZ=T) Max | 031V 031

USBee DX Test Pod User’s Manual

|SPI BUS SETUP

The SPI Bus Decoder takes the captured data from an SPI bus, formats it and allows you to save the

data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test

clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before

connecting the signals to the unit.

The SPI Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the SS (slave select), SCK
(clock), MISO (data in), MOSI (data out), and the GND (ground) line. Connect the SS, SCK, MISO, and
MOSI to your digital bus using the test leads and clips. Connect the GND line to the digital ground of

your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names

on the main application screen.

. Channel Settings

SPI-4

— Bus Definition

 Framel
" NoBus PS/2
" USE & 5P|
AN GMBus
12 25
 ASYNC Serial
= 1wire " Parallel

Butes/Line I 16

55

FEDCEBEASS 76643210

sc. o A
w50 g O
oS! o O

—MISO SCK Edge— MOSI SCK Edge— Use S5 Format Drelimiter
' Rizsing ' Rizing 550N " Decimal " Comma
" Faling " Faling ' 55 0FF ' Hex ' Space

— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|z|

Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|z|z|

Settings

Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

Cancel |

USBee DX Test Pod User’s Manual

53

On the above dialog box, select the signals you plan to use for the SPI protocol. Also set the
appropriate sampling edges for both data lines and if you would like to use the SS (slave select) signal.
If you turn off the SS, all clocks are considered valid data bits starting at the first clock detected. Also
choose what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

Fie Wiew Setup

LTI VUL
Ly LT

R

Signal &

| SignalC

Signal D
m =

FCHI —-CH2— -
i Offse M Offss 2 Vidiv
2| 2] =] [10 usidiy
v 2y 107

Seconds/Division [Cursers S 1]
{ P s a0 00005 020s 2050 05s 050 50 w0505
<[I]

~Pod Status - ~Acquisition Control Trigger

& USBee DX Decoders o [l
Print Save Select Al Copy

W Decoded Transactions 1

-1.500us, SPI-4, MOSI: CC 33
-1.500us, SPI-4, MISD: 33 CC

0
0
(™

R

S
&

o

Trigger Position ixplay Bl Y1 [oov 0

=il
o mun | 20K g Nomal y|| | Persist ®1_[00ns [] vz [0 Tov
| o ao AL Mg || TR ‘ R
UsBeo 0k || Single | [o | | @ it || W T [0 Fmesm e w1y |[0ow
1) JERE Min [0087][0.o8v
[E=] E ey

54 USBee DX Test Pod User’s Manual

SM BUS BUS SETUP

The SM Bus Decoder takes the captured data from an SM bus, formats it and allows you to save the
data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The SM Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the SM Clock and SM
Data, and the GND (ground) line. Connect the SM Clock and SM Data to your digital bus using the test
leads and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings x|
SMBus-3
— Bus Definition
Frame1
 NoBus pas DtFEDEBA98?854321D
 Use SRl =
Com o ek o o
20 125
7 ASYNC 7 Serial
= 1wire " Parallel
Show ACKs Farmat Delimiter Contents
ks ON Decimal Caormma @ Al
& Acks OFF | & Hex ' Space " Data Only

— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|~|=z|z|z|=|=|

Trigger Then =|z|z|z|z|z|z|z|z|z|-|z|z|z|z|z]|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 55

On the above dialog box, select the signals you plan to use for the SM Bus protocol. Also choose
what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

z
=
B
= QU [
=
(-] L
=
2| % USBee DX Decoders -101x]
Print Save Select Al Copy
z
=] 34 Decoded Transactions 1 E _[of x|
O [F£00. 000ms, SMBuz-3, (5] A1 Read 01 (5] AD Wrice 00 (5] AL Read 80 (P) =]
=
=
= -
E1E ‘ »
= 4

500 us/div

Seconds/Division [Cursors X of
(T s s s s swwms ioms 1s5ms 2350 265ms
K i 12
Pod Status| ~Acquisition Control— - Triager isplay
Tiigge: Fosiion x2xl Yi_[oo oW
[20k <] || & Nomsl
175 ¥ Fun [120K A B b || C P X |0 Nages] e 007 0w
at buto ¥ Vectors | | %@ [00ns | i ow oW
Stopped 7
usBze 0K | | Single | [4meps (-3 el R (R T 100 TS e [0z (09w
Q@ i‘ Min [0V 0057
T CHZ

56 USBee DX Test Pod User’s Manual

SERIAL BUS SETUP

The Serial Bus Decoder takes the captured data from a Serial bus, formats it and allows you to save
the data to disk or export it to another application using Cut and Paste. The serial data can be from
any clocked serial bus and can be aligned using a hardware signal or an embedded sync word.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Serial Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock, Data and
optional Word Align signal, and the GND (ground) line. Connect the Clock, Data and Word Align to
your digital bus using the test leads and clips. Connect the GND line to the digital ground of your
system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings x|
Serial-3

— Bus Definition
 Framel
 NoBus pas 5-|DtFEDEBA98?854321D
" UsB Pl rial D'ata - 1 o
Com O o o o~
20 125 \word Al
C ASYNC & Serial ord Aligre - 8 I 1 oo

7 14wire " Parallel

Bitzwiord I a “words/Line I 16 Align ¥ alue [hex] ID

— Clock Edge Align Mode Align Edge Format Drelimiter Bit Qrder
' Rizsing & Signal " Rizsing " Decimal " Comma " MSE First
" Faling Walue & Faling ' Hex ' Space & LSE First
— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|~|=z|z|z|=|=|

Trigger Then =|z|z|=|z|z|=z|z|z|=|-|=|=z|=z |z |z

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 57

On the above dialog box, select the signals you plan to use for the Serial Bus protocol. Select whether
you have an external word align signal (Align Mode = Signal) or if your serial data has an embedded
sync word in the data stream (Align Mode = Value). The Bits/Word is the size of the Sync word as
well as the output word size. Choose the bit ordering as well as the output format of the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

N1
File ‘iew Setup Help
0 BIEIEE
HEEE
¢ HHEB
Sel| Seriah3 = s [= [| Ly T I LA A
[Sgnal_=[E[E[E
Signals] — |- |= =} puy ri L I igiy uy o
::':u =8
HEa0, #.USBee DX Decoders 53—
z|zlz|z Prirt Save Select Al Copy —
SllElf =izl 24 Decoded Transactions 1 _1o| x|
slzlzls F500.000ms, Eerial-a, 85 00 2F 00 60 AL 60 =]
etete 000ns, Serial-s,
| SgndC_=[=[=[3)
SignalD1 3 | [z |3}
EIEIEE) |
A0a0 d 2| —
CHI —7-CH2— -
i Dffsevidiv Ofs 2 Vidiv
al al] 2] « 100 usidiv
2v 2v
Seconds/Division [Cursors X oif
(T o oss ames sems woms sems smes rems
<[|) I>]
-Pod Status | |-Acquisition Control Trigger play
Trigger Pasition XXl ¥1 [0 |[oov
[200% <] | | & Momal I~ Persist X1 [00ns
1234 - Faun Ao 1| | Veclors T }Dﬂns | Y;’QW [0.0V
at ST 00V || 00V
usss 0k | | Single | [2hips = | | @ s T 1000 57y ae [Giev [0z
il Min [0.0V 008V
T CHZ

58 USBee DX Test Pod User’s Manual

125 BUS SETUP

The 12S Bus Decoder takes the captured data from an 12S bus, formats it and allows you to save the
data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The 12S Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock, Data and Word
Align signal, and the GND (ground) line. Connect the Clock, Data and Word Align to your digital bus
using the test leads and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

. Channel Settings x|
125-3
— Bus Definition
 Framel
 NoBus pas |2SDataFEDEBA98?854321D
 USE 5P

Com e svec o~
oz @ |25 \word Al
©ASYNG C Sedal ord Aty 0 N O 5 o o o

7 14wire " Parallel

Bitzwiord I 12 “words/Line I 16

— Clock Edge Align Edge Format Drelimiter Bit Qrder
' Rizsing " Rizsing " Decimal " Comma " MSE First
" Faling & Faling ' Hex ' Space & LSE First
— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|~|=z|z|z|=|=|

Trigger Then =|z|z|z|z|z|z|z|z|z|-|z|z|z|z|z]|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 59

On the above dialog box, select the signals you plan to use for the 12S Bus protocol. Select the start
edge for the external word align signal, the Bits/Word and the Clock sampling edge. Choose the bit
ordering as well as the output format of the traffic.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

~; USBee DX Osci

File Yiew Setup Help

=10l x|

=z [2z=
za[z]z
ansl2 EEB
B | 1253 =[s|a|s IR L)) ol I LI ELELLE L0 CLEL L L g
| Sigrelt _z[z|z[=
il Y E i & Soce Dk Decoders il
Bl [|3 Prirk Save SelectAll Copy
z(a[z]z
2% Decoded Transactions 1 -3 x|
z|z|= 500 000ms, 125-5, 085 270 000 Al E|
z|z|z - -
a[s[z
alz)z
[SignaC_=[3[=[E . 2%
SignalD 1 2 |33 [@ 4
| '
ala[zz

CH1 —-CH2—|

i Dffset iy Offss 2 Vidiv
=[] 2] 100 usidiv
2v 2v

Seconds/Division [cursors X of
[. T T o doms ems eems swss soms s
<l | B 12|

- Pod Status | ~Acquisition Control Trigger

play

Triager Posiion ¥i 00 |[oov
e Fun | [0] | | Nomal ﬂjg:_'l ™ Persiat X1 2 oY i
= o € Ao 7 Vectors %z T
UsBes 0K | | Single | [2Hsps = = —) R i Max [D167 || 0237
(] E— Clear Mo | LI,

60 USBee DX Test Pod User’s Manual

PS/2 BUS SETUP

The PS/2 Bus Decoder takes the captured data from an PS/2 bus, formats it and allows you to save
the data to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to your hardware using the test
leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this
range on the signals will damage the pod and may damage your hardware. If your system uses
different voltage levels, you must buffer the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The PS/2 Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock and Data
signals, and the GND (ground) line. Connect the Clock and Data to your PS/2 bus using the test leads
and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names
on the main application screen.

&, Channel Settings x|

P52-2

— Bus Definition

prad FEDCBAIS8 76543210

" NoBus * PS/2

 UsB (ol P52 Diata - A o
Cow O ps20uk el
2 s
 ASYNC Serial
= 1wire " Parallel

r— Trigger Setting:

Find =|z|z|z|z|z|z|z|z|z|z|z|z|z|=|~|

Trigger Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|-|

Settings
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|
Cancel |
Then =|z|z|z|z|z|z|z|z|z|z|z|z|z|=z|z|

USBee DX Test Pod User’s Manual 61

On the above dialog box, select the signals you plan to use for the PS/2 Bus protocol.

Then when you click and drag (with the right mouse button) on the waveform screen on that
waveform, the bus traffic will be decoded as in the following screen.

~: USBee DX Oscillescope and Logic

Fle Vien Sebup Help

=13l

FCH1 CH2—
Vi Offsed v Offs
2y 2v

-|-|5[=
Emz HEE (0, (R,
PS2 P52.2 EEB]
I =[E[a]=) 1
| Snah_=|=|z[2 @8 uspee DxDecoders =lolx|
SinalS = |2)3 |3 S save Select Al Copy
HEHE
HEBE [Woecoded ransactions L I 1= | —
=z[z(= =i
T(z[3[T
HEHE
w[=(z[5)] 2 _ bevice: 00
[Sonaic_=[E[=]z 3 _ bevice: 00
SignslD = |z|z|@
===z
z|z|z|=z e

- Pod Status

Seconds/Division
“ »

a
(R Fiun
USBesOK | | Single

]

oK
aams 12ms o.2ms tams 5.2ms 21ams
121
i il Y1 [0 [
I~ Persist 0.
¥ Vectors gy LLE N o
[wide oL | eI ol
TIR2%1] Max [03TV EN
i‘ Min [0V][0087

62

USBee DX Test Pod User’s Manual

PACKETPRESENTER™

 OVERVIEW

The USBee Test Pod functions as a number of standard electrical test equipment, such as Logic
Analyzer, Oscilloscope and Signal Generator.

Using the Logic Analyzer/Oscilloscope application, it is normal for users to debug communication that
is being transmitted between ICs or system components. This debugging can be performed by
viewing the waveforms on the screen, or by viewing decoded bus traffic for the various types of
busses. For example users can see the voltage versus time waveforms of an ASYNC bus Tx and Rx
lines, or decode the waveform into a byte stream using the standard bus definition (ASYNC for
example) that is then displayed in text form.

The PacketPresenter™ feature runs alongside of the existing bus decoders. The PacketPresenter™
takes the output of raw binary data from the bus decoder and parses the stream according to users
PacketPresenter Definition File for the intent of displaying the communications in easily understood
graphical displays.

PacketPresenter™

PacketPresenter™
Voltage versus Bus Decoder analyzes hinary
Time Sampling extracts binary databased on user
output as dataand outputs definition and
waveform as numeric text outputs packet
information

USBee Test Pod
connects to device
under test

Protocols are defined using a text file, called a PacketPresenter Definition File, which specifies the
fields within the protocol and how to display that information on the screen. Itis intended to be
generic enough that customers can create their own protocol decoders for their own custom bus
types.

USBee DX Test Pod User’s Manual 63

It is assumed that each PacketPresenter Definition File will correspond to one single bus type, and
that the incoming bytes from that bus will be inputs for the decoding process. This steam of data is
called an incoming Data Stream and it is handled by a Protocol Processor. Each Protocol Processor
takes a single incoming Data Stream that is broken into Packets, parsed into Fields and either
displayed as a field on the screen, ignored, and/or sent to a new Protocol for further processing (as in
an N layer protocol).

Each Protocol Processor defines how to break the stream into Packets, and how to break the Packets
into Fields. These Fields can then be displayed or sent to another Data Stream for further processing.

Below shows a sample PacketPresenter output screen.

ﬂ USBee DX PacketPresenter [= | B [t

. i . T e S W1

| v

IEIEI
Time: 25.8u ead Fa\sé RX_IR 1 0

|| Layer: CYBRESSRFIC IEIE! ADDRESS _ _

Time: 39.51 ead Fa\sé AB D2 10

080921 09 B1 01 E6 AB D2 10

i Layer: CYPRESSRAIC m ADDRESS _ DATA

Time: 88.8u wWrite Fa\se

IE}I!IJII! |
i Time: 9 True | R 0
ST T i S B B IXBERR
Time: 105.8us write | False | T2 0
| |
5
1 | v

64 USBee DX Test Pod User’s Manual

ESETTING UP THE PACKETPRESENTER

Each digital waveform on the screen can be defined as a different bus (12C, SPI, etc.) in the Channel
settings dialog box by clicking on the white box to the left of the signal name. Below shows the
Channel Settings dialog box.

F |
B3 Channel Settings w
. o — e ————
SPI-3
Bus Definition
?“USGT::;C Firt FEDCBAIS 76543210
C AN " SMBus 5CK mn _ B e |
" 12C {125
O ASNG € Seil MISC o |
C v Pade oS! o O
BytesiLine |5 BitzMwford [g
MISO SCK Edge— MOSI SCK Edge Usze 55 -+ Format -+ Delirniter
' Rising &' Rising * 550N " Decimal " Comma
" Falling " Falling " S5 0OFF * Hex * Space

{
[l PacketPresenter -
Dizplay the Drata Stream using the following PacketPresenter
definitian fil
C:howaviSBee Test Files\SPI CYRFIC PPD kst

Choose PacketPresenter

Definition File Edit File

Trigger Settings

Find xasxsx-xxxxasxsx|

Trigger Then xasxsx-xxxxasxsx|

Settings
Then =|z|z|z|=z|z|z|z|z|z|z|z|z|z|z|z| Cancel

Then xasxsxxxxxxasxsx|

To enable the PacketPresenter for this channel, check the “Display the Data Stream using the
following PacketPresenter definition file” checkbox. Then choose the PacketPresenter definition file
by clicking the button to the right. Once you choose the file, you can edit the contents by clicking the
“Edit File” button.

Once the PacketPresenter is enabled all bus decodes will be processed through the PacketPresenter
as well as the original bus decoder.

%VIEWING THE PACKETPRESENTER OUTPUT

Once the bus is defined and the PacketPresenter is setup with a PacketPresenter definition file, right
clicking and dragging on the waveform will not only decode the raw data from the bus (as specified in
the Channel Settings), but will also parse the data based on your PacketPresenter definition file.

If the PacketPresenter is not enabled, only the decoded data is shown as seen below.

USBee DX Test Pod User’s Manual 65

Enablng the PacketPresenter shows the PacketPresenter output, with the original decoded data in a
minimized window as in the following screenshot.

IEE!-__-_--“II

DIR INC ADDRE

66 USBee DX Test Pod User’s Manual

You can show the raw decoded data at the same time by restoring the minimized window as shown
in the following screenshot.

"3 USBee DX PacketPresenter —— -

:F\re Edit View Window

£+ SPI-3 Decode

\
: 30.7us, SPI-3, MISQ,MOSI: FF 07 5B 82
30.7us, SPI-3, MISQO ,MOSI: 00 21 08 SB 0% 5B 21 08 0% 0% Bl 21 01 03 E6 Bl 28 01
30.7us, SPI-3, MISQ,MOSI: 00 A0 00 01
30_7us, SPI-3, MISO,MOSI: 00 &1 00 &0
30_7us, SPI-3, MISO,MOSI: 00 &4 2R EO

< 1] +

B3+ SPI-3 PacketPresenter [=1

i Layer: C'YDRE:SRFIC IEIIE _ADDRESS nxm: RXE1 | RXBERR. |

Read Fa\ 1 0
Layen CYPRESSRFIC IEIIE!_

Read | False | RX_ El 10

I | DIR | —
Write Fa\se T. D

U IEEIEﬁﬁEIHEIIE I

IE!IE!EE TXBi5

write | False

L1 v

SAVING PACKETPRESENTER DATA TO TEXT OR RTF FILES

The PacketPresenter output can be saved to either a Text file or an RTF file (Rich Text Format). The
text file output is a textual representation of the packets as seen below.

Layer: CYPRESSRFIC DIR INC ADDRESS READDATA

Time: 615.2797ms Read False CHANNEL_ADR 0

Layer: USBBUS PID ADDR EP PID INDATA HS
Time: 616.0198ms IN 2 0 DATAQ 22 2A 00 07 05 81 03 08 ACK
Layer: USBBUS PID ADDR EP PID INDATA HS
Time: 617.0197ms IN 2 0 DATAL 00 OA 09 04 01 00 01 03 ACK
Layer: USBBUS PID ADDR EP PID INDATA HS
Time: 618.0197ms IN 2 0 DATAQ 01 02 00 09 21 11 01 0O ACK
Layer: USBBUS PID ADDR EP PID INDATA HS
Time: 619.0197ms IN 2 0 DATAL 01 22 D1 00 07 05 82 03 ACK
Layer: USBBUS PID ADDR EP PID INDATA HS

Time: 620.0197ms IN 2 0 DATAQ 0A0008 ACK

USBee DX Test Pod User’s Manual 67

Saving data to an RTF file format saves the graphical nature of the packets and can be read by many
word processing programs, such as Microsoft Word and WordPad. Below is a screenshot of data
saved to an RFT file and viewed using WordPad.

us
Time: 624.0135ms

= N EEEY
Q o

WRITEDATA

BX_TR{_STATUS_2DR 0 o

WRITEDATA

| cxss § nxe1 J exeean Joaxc |
o 1] a o

a

1

& wza | mm | mozan e oo |
) 1] a o o

1 1 a 1

¢) rxss | xmn | axmzan Jf axc || ax: |

5] Document - WordPad - =]
File Edit View Insert Format Help
DEd S & Ba B
Arial v 10« Westem - B 7 UG =
v 2 A B e T
b

n

For Help, press F1

In order to maintain correct position of the graphical portions of the RTF file, all spaces are converted
to the character “~” and set to the background color. Viewed or printed in the RTF format will look
correct as above. If you copy only the text of this output, you will want to search and replace every
“~" with a space.

ECOPYING PACKETPRESENTER OUTPUT TO OTHER PROGRAMS

You can copy the contents of the PacketPresenter output window to other programs in a number of
ways.

First, you can copy the screenshot of the window by selecting the window and pressing Alt-PrtScr on
your keyboard. This copies the image of the window to the Windows clipboard and you can paste
that image into any program that accepts images.

You can also use the Edit | Copy menu item. If the textual decode data window is active, the selected
text is copied to the clipboard. To select text, just click and drag across the text you would like to

68 USBee DX Test Pod User’s Manual

highlight. If the PacketPresenter output window is highlighted, all packets starting with the packet at
the top of the window are copied to the clipboard. When pasting the data to other programs, it will

paste the data as an RTF file if possible and text otherwise.

CHANGING THE PACKETPRESENTER SIZE

You can change the size of the fonts used by the PacketPresenter by selecting the View | Larger or

View | Smaller menu items. Below are examples of different size fonts.

_
=3 USBee DX PacketPresenter L

File Edit View Window

£ Protocol D
Layer: CYPRESSRFIC ADDRESS || READDATA
Time: 668.4468ms || Read | False | RSSI_ADR 21

Tlme 668.466ms Read False RSSI_ AD\

Layer: USBBUS

INDATA

Time: 669.0173ms | N 0 | DATA1 | 4C 00 50 D0 20 00 52 00 | ACK

| Layer: USBBUS PIDN ADDR | EP | INDATA [HS |
Time: 670.0173ms | IN 2 | 0 | DATAD | 44 0O 4B 00 20 00 42 00 | ACK
Layer: USBBUS |PIDH = INDATA

Time: 671.0173ms | IN 2 0 | DATA1 | 72 00 65 00 64 00 67 00 | ACK

Time: 671.5057ms | Read | False | RSSI_ADR 21
Layer: CYPRESSRFIC ADDRESS || READDATA
Time: 671.5248ms | Read || False | RSSI_ADR 22
T | | -
K|

B3 Deco... [|[E][52]

™3 USBee DX PacketPresenter .

File Edit View Window

!I

m
me

Virite | Faise

== ESSRIC IE m

=23 | Faise

USBee DX Test Pod User’s Manual

69

ESEARCHING FOR PACKETS

Once displayed, you can search for the next packet that contains certain fields that match your
criteria. Below is the Search Packet dialog box that is shown by using the View | Packet Search menu
item.

B3 Search Packet

|Inc:

| |
|Enler Field Mame | ﬂ |\-"alue

| j

| j

|Enter Field Mame

|Enter Field Mame

In the leftmost textboxes, type the Field Label. Then select the comparator operator (equals, not
equals, less than, greater than...) and finally the value that the field is to be compared against.
Finally, if there is more than one field in the search list, choose whether to AND or OR the search
terms. When you click Find, the next packet in the list (starting from the top of the window) will be
placed at the top of the window. You can search forward or backward by selecting the appropriate
radio button on the right.

70 USBee DX Test Pod User’s Manual

FILTERING PACKETS

Once displayed, you can filter the output to only show packets that contains certain fields that match
your criteria. Below is the Filter Packet dialog box that is shown by selecting the View | Packet Filter

along with the resulting PacketPresenter output.

Layer: USBBUS

A0 | 22 2A 0007 0581 03 08 | ACK

~ATA1 |00 0A 090401000103 | ACK

IIEIESIIE-

5 T

01 EIZIJEIEI?ZI 11 01 00 | ACK

EEIE-
I 2720 | 0A0008 | ACK

IIEIEEIIEIIE

2

EEIIE-
I -1 04030304 | ACK

EEIEEIIE-IE
IIEIIEE--

|FD |

|apoR |

[eP [= =
|

IEnlel Figld Mame

Filter Off

AND ¥
Clear Cancel

IIEEEIIIE-

21| 04090304 | ACk

-
™3 USBee DX PacketPresenter l _IQ‘M
File Edit View Window

B3 Protocol Decode =E1=EE]

In the leftmost textboxes, type the Field Label. Then select the comparator operator (equals, not

equals, less than, greater than...) and finally the value that the field is to be compared against.

Finally, if there is more than one field in the search list, choose whether to AND or OR the search

terms. When you click Filter On, only the packets matching the criteria are displayed. To turn off the

filtering, click on the Filter Off button.

USBee DX Test Pod User’s Manual

71

MULTIPLE DECODE DISPLAY

Using the Window | Tile menu you can choose to show the open windows Horizontally, Vertically or
Cascaded as displayed below.

[e e o

72 USBee DX Test Pod User’s Manual

PACKETPRESENTER TO WAVEFORM ASSOCIATION

When you click on a packet in the PacketPresenter output window, the entire packet is highlighted
and the associated raw decoded data is highlighted in the decode window. The original waveform
screen is also shifted to center the start of the packet in the logic analyzer window.

@ USBee DX Oscilloseope and Logic Analyzer - SPI-CypressRFIC Shortuld l - a =|E] &%
File View Setup Help

z
FIE] |
L] o
E1E] Sy I T T TV LTI T BN
2|3 {43 USBee DX Packet j . . [=l@] =]
|
f : : File Edit View Window I
= B3 SPI-3 Decode EEEE]

|| [Receiver's Configuration

z|a|a|a|g
—[=[=[= i) S
—] Z[E[z[T) | 3°-72=- SPI-3, MISO,MOSI: 00 21 08 58 09 &8 21 08 09 09 Bl 21 01 09 E6 B1 A8 01
30_7us, SPI-3, MISO,MOSI: 00 A0 00 01
d 2151212 | 20.7us, spI-2, MIso,MosI: 00 €1 00 <o
[EHUEN = e e ie 20.7us, SPI-3, MISO,MOSI: 00 &4 2A EO
@(a|a [z
@[a|a [zl
Dooa|

Transmitter's Configuration 5

~R_IBAT —B_IBAT - Trig

- B m] 5
;1 H
B3+ SPL3 PacketPresenter EE=EEE]
CRIEE| e e e e k]
RXD

GREEN - REMOTE [BAT, Al

Secands/Division {

<2
KT — | o1 T
Pod Status | - Acquisition B : St F
raw =1|| e |3 -
UsBee 0K | | Single | [om .
@ 2101 =67.7u P

This feature allows you to correlate what is shown in the PacketPresenter window to the actual
waveform on the logic analyzer that created that packet.

USBee DX Test Pod User’s Manual

73

ECURSORS ON THE PACKETPRESENTER OUTPUT

You can place the cursors using the PacketPresenter window by using the left and right mouse
buttons. Place the mouse over the packet you want to place the cursor on and click the left or right
button. The cursors are placed at the beginning of the packets. The resulting difference between
cursors s shown at the bottom of the screen.

If more than one bus is being shown, you can measure the time between packets on different busses
using the cursors as shown in the following screen. Set the first cursor by left clicking in the first
window and place the second by right clicking in the second window.

@ USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Shortuld
File View Setup Help

. [=[E] =

74

FILIEIE]
zzzD L
LI)
E L i ULIERLFLOLANT
@ | 8| 2| = fWThUSBee DX PacketPresenter (=l@] =
zzaaz - - I
22z g g File_Edit View Window

| [Rooeiver's Configuration = | &5 P13 PacketPresenter EE=E
z|=|=|= g =0 Eﬂm | Roxe 1 | RRBERR R C | Rkl
===z g Read | False 1 0 1
EIEIEIE |

s | SP m|m|=|m g ne | Read | Falea | R
TXMOS Z|z|z |z IEIII

z(z [z [z 1) ead | False
z|z|z ll m
BEEE | Read | Faise | CHA

Transmitter’s Configurati
~R_IBAT ~B_IBAT - Trig
Div Offset | /Div Offset %

7

o i a

. Lo Croncesari ADDRESS | READDATA
Resc | False

12m
i IE!_II ADDRESS __| READDATA

7 Read less
JJ

i £ SPI-3 PacketPresenter
IEm

IE!.II I
= ead | Fa

GREEN = REMOTE IBAT_ R

Seconds/Division
« 3

Pod Status | - Acquisition -
[er =] | men [0 L ;
K2to X1 =-1651ms A

Loyar CrpREssREIC] DIR | I
Time: 88.5us

Write | Fal

ADDRESS | TXDATA

ime: 88
|

:J
I Time: 57.5us | Re

Layer: CYPRESSRFIC vl 1S

1

USBee DX Test Pod User’s Manual

PACKETPRESENTER DEFINITION FILE FORMAT

Each PacketPresenter Definition file defines how the incoming data stream is represented in the
PacketPresenter screen of the USBee DX MSO application. These PacketPresenter Definition files are
in text format and are easily created using either a simple text editor.

Each bus defined in the USBee DX MSO application can have a different PacketPresenter Definition
File.

The intent of the PacketPresenter is to produce a series of 2 dimensional arrays of labels and values
to be displayed as below by the user interface.

I Command Length Address I Data
IS 2 84DF |3
I Command Value

[Readrssi 14.34

I Command Setting
I 23 Power Amp On

It is the PacketPresenter Definition File that defines how the data is to be parsed and displayed.

COMMENTS IN THE PACKETPRESENTER DEFINITION FILE

Comments are started with a semicolon (;) and go until the end of the line.

CONSTANTS IN THE PACKETPRESENTER DEFINITION FILE

Constants are fixed numbers anywhere in the file. These constants can be expressed as decimal, hex,
or binary using suffixes after the value. Decimal has no suffix. Hex uses the suffix “h”. Binary uses
the suffix “b”.

So,

16 = 10h = 10000b
244 = F4h = 11110100b

Gain and offset values used in the Fields section are always in decimal and can contain decimal
places.

USBee DX Test Pod User’s Manual 75

PACKETPRESENTER DEFINITION FILE SECTIONS

Each PacketPresenter Definition File has the following syntax that separates the file into sections that
correspond to the Channel definition and each of the Protocol Processors.

[Protocol]
[Protocol]

[Protocol]

PROTOCOL SECTION

Each Protocol Section defines what the incoming data stream looks like, how to break the data
stream into packets, and how to parse out the fields in each of the packets. Multiple Protocol
Sections can be defined for passing data from one Protocol Section to another.

Each Protocol Section has the following syntax that specifies the packetizing and parsing into fields.

[Protocol]
name = ProtocolName
[Packet]
packet processing settings
[Fields]
packet field processing settings
packet field processing settings
packet field processing settings

The ProtocolName is a label that uniquely identifies this protocol processor. This name is used in the
Field definitions to define which Protocol to route a field of data (for use by multilayer protocols).

The highest level Protocol is the first protocol in the file. This is the Protocol Processor that is sent

the incoming data stream from the bus as defined in the Channel Settings Dialog Box for that
waveform.

BYTE-WISE BUSSES VS. BIT-WISE BUSSES

Some busses are by nature byte oriented, while others are bit oriented. The following table shows
the type of bus.

Bytewise Busses Bitwise Busses
. Async . Serial
° 12C . 12S
. Parallel . OneWire
3 SPI . CAN
. PS2 . usB

76 USBee DX Test Pod User’s Manual

BUS EVENTS

Each bus type also can have certain bus events that may be significant in the decoding of a protocol.

One such event is an 12C Start Bit. While the Start bit is not an actual bit in the data stream, it does
signify to the 12C slave that a certain transaction is taking place. These bus events are inserted into
the data stream and can be used (or ignored) by the protocol processors. The list of Bus Events

supported is in the following table.

Bus Type

Async

12C

SPI

usB

CAN

1-Wire

Parallel
Serial

PS/2

12S

SMBus

Event

1 - Parity Error

1 - Start Bit

2 - Stop Bit

4 - ACK

8 — NACK

1-SS Active

2 - SS Inactive

Note: You MUST have SS On in the channels
settings for these events to occur
1 - SETUP/IN/OUT Received

2 —ACK/NACK/Stall Received

4 — No Handshake received

1 — Start of CAN packet

2 — End Of CAN packet

1 - Reset Found

2 - Presence Found

1 - Device to Host byte follows
2 — Host to device byte follows

1 - WordSelect Active
2 - WordSelect InActive

1 - Start Bit
2 - Stop Bit

Table 1. Bus Event Types

A Bus Event of 127 (7Fh) is a special event that occurs at the end of a packet of data that is sent from

one protocol to another. This can be used to end the packet sent to the new layer using the [END]

section and the type = event in the new protocol level.

USBee DX Test Pod User’s Manual

77

DATA CHANNELS AND MULTIPLE DATA SIGNALS

Some buses can also have more than one data signal used in the protocol. One example of this is the

SPI bus, where for each byte sent on the MOSI line there is one byte received on the MISO line. In

the protocol definition you can specify which of the signals to expect the next field of data to be sent

on. Inthe SPI example, you may get a Command and Length field on one signal, followed by the read

data back on the other signal. The decoder would take that into account and show the command,

Length and Data as a single transaction.

Multiple signals are differentiated in the PacketPresenter using the X and Y channel specifiers. These

channels are specified by selecting the signals to use for that bus in the Channel Settings dialog box.

The following table shows which signals are the X and Y signals.

Bus Type

ASYNC

SPI

1 Wire

12C

Parallel

Serial
CAN

PS/2

UsB

78

Channel Setting
Dialog Box setup
for Channel X

Least Significant
Async Channel
selected

Signal chosen for
MISO

Data Signal

Data on SDA/SCL
bus

All Data Signals
sampled together
Serial Data

Rx Data

Data from Device to
Host

Data on D+/D- bus

Channel Setting
Dialog Box setup for
Channel Y

Next Least Significant
Async Channel
selected

Signal chosen for
MOSI

Not used

Not Used

Not Used

Not Used
Not Used

Data from Host To
Device

Not Used

Notes

If more than 2 Async
channels are selected to
be decoded, the additional
channels are not used by
the PacketPresenter.

Data Bytes alternate
channels since there is one
byte X for every one byte Y

Each sample of all
channels is the data word
sent to channel X

The data stream contains
the Sync, PIDs, data fields
and CRCs. The EOP is not
included. See the USB
Example file for example
Field Lines.

Table 2. Channel X and Channel Y Definitions Per Bus Type

USBee DX Test Pod User’s Manual

PACKET SECTION

The Packet section defines how a packet is bounded and what, if any, preprocessing needs to be done
on the packet before the fields can be processed.

[Packet]
[Start]

; How does a packet start?
[End]

; How does a packet end?
[Decode]

; What decoding needs to be
; done to get real data?

START AND END SECTIONS

The Start and End sections define how a packet is bounded. The available packet bounding Types are
defined below:

For [START]

- Next: The next byte or bit is assumed the start of a packet

- Signal: An external signal indicates the start of a packet

- Value: A specific value in the data indicates the start of a packet

- Event: A bus specific bus Event or Events indicates the start of a packet

For [END]

- Next: The next byte or bit is assumed the end of a packet

- Signal: An external signal indicates the end of a packet

- Value: A specific value in the data indicates the end of a packet

- Length: A specific or calculated length determines the end of a packet
- Event: A bus specific bus Event or Events indicates the end of a packet
- Timeout: A packet ends after a set timeout without data or events

TYPE = NEXT

The start or end of a packet is the next byte or bit to arrive.

[Packet]

[Start] or [End]

type = Next ; Start/End of a packet is the
; next byte/bit to arrive

USBee DX Test Pod User’s Manual 79

TYPE = SIGNAL

The start or end of a packet can be indicated by a separate signal (such as a chip select or a frame
signal) using the signal setting.

[Packet]

[Start] or [End]

type = signal ; Start/End of a packet is based
; on a signal

signal = signalvalue ; Signal number 0 - 15

level = 1 ; level the signal needs to be

TYPE = VALUE

The start or end of a packet can be indicated by a certain data value contained in the data using the
value setting. Multiple values can be used, where any one match starts or ends a packet. All bits in
the Value are included in the resulting packet at the start of the packet. You must also specify the
number of bits that the value covers (defaults to 8 bits if not specified) using the bits keyword. You
can specify a mask value to apply to the start data and values. When the mask value has a bit that is
a 1, that bit in the value and data are compared.

[Packet]

[Start] or [End]

type = value ; Start/End of a packet is based on a data value
mask = bitmask ; Bitmask to apply to the data stream

value = valuel ; value that the data needs to be to start/End
value = value2 ; value that the data needs to be to start/End
value = value3 ; value that the data needs to be to start/End
bits = 8 ; how many bits in the start/End word

You can use the EXCLUDE keyword in the [END} section to leave the end data on the data stream for
the next packet. This is useful for when there is no indication of the end of a packet except for the
arrival of the next packet.

TYPE = LENGTH

Only valid in the [END] section, the end of a packet can be indicated by a certain length of data. You
use the BitLength or the ByteLength keywords to specify how long the packet is. The length can
either be a fixed length expressed as a constant, or variable length based on the contents of a packet
in the data stream.

type = length ; End of a packet is based
; on a length
Bytelength = length ; How many bytes per
; packet
or

Bitlength = length ; How many bits per packet

To use the contents of one of the fields as the packet length, you use the name of the field defined in
the Fields section. You can also do simple arithmetic on the field value to compute the final packet
size.

80 USBee DX Test Pod User’s Manual

type = length ; End of a packet is based
; on a length
Bytelength = fieldname * 2 + 2
; field holding packet size
; * (or /) a constant (optional)
; + (or -) a constant (optional)

If present, the * or / must come before the + or — offset and is executed first.

For example, if fieldname Field has the contents of 16, then the following is true:

fieldname * 2 + 2 = (16*2)+2 = 34

fieldname + 2 = 16+2 = 18

fieldname /2 -2 = (16/2)-2=6

fieldname /2 = 16/2=8

fieldname + 2 * 2 = invalid (* must come before offset)

fieldname - 2 / 2 = invalid (/ must come before offset)

The length of the packet includes ALL of the data from each of the data channels for that bus. If the
bus contains only one data channel (such as 12C), the length counts all data on that one bus. If the

bus has two data channels, the length refers to all data on both channels combined.

TYPE = EVENT

The start or end of a packet can be indicated by the reception of any of the bus specific Events. For
example in 12C you get a Bus Event for each Start Bit and a Bus Event for each Stop Bit. In USB you
get a Bus Event for each Sync word and a Bus Event for each EOP. Available bus types are defined in
Table 1. Bus Event Types.

The event value is a bitmask that includes all events that you want to use. If any of the events occur,
a packet will be started or ended.

type = Event ; Start/End of a packet is
; signaled by event

event =1 ; Use Event 1. Available events
; depend on bus type

or

event = 3 ; Use either Event 1 or Event 2

TYPE = TIMEOUT

The end of a packet is determined by a timeout since the last valid data or event on the bus. The
timeout is defined in units of microseconds.

[Packet]

[Start]

type = timeout ; End is after timeout

timeout = 45 ; microseconds since last data/event received

USBee DX Test Pod User’s Manual 81

CHANNELX, CHANNELY OR CHANNELXORY

CHANNELX, CHANNELY or CHANNELXorY specifies what channel is used when an event or data is
defined for starting or ending a packet. Channel X and Channel Y are different based on what the
physical bus is and can be found in Table 2. Channel X and Channel Y Definitions Per Bus Type. If it
does not matter which channel the data or event occurs on (it could be either), use the CHANNELXorY

keyword.
[Packet]
[Start]
type = value ; Start of a packet is based on
; a data value
value = 41h ; value of data that starts the
; packet
bits = 8
channelX ; data/event must be received
; on channel X
or
channelY ; data/event must be received
; on channel Y
or
channelXorY ; data/event must be received
; on either channel X or Y

DECODE SECTION

Each packet can have encoding on the data that needs to be removed in order to see the real data.
This section defines what decoding should be done to the packet. The entire packet from start to end
is sent through the decoders. If only select parts of the packet needs to be decoded, you must create
your own Add-In decoder using the ADDIN keyword.

Available decoding types are:

Keyword Definition

NRzI A bit change on the input means a 1 bit on the output, no
changea 0

MANCHESTER Remove Manchester encoding from data

INVERT Invert all bits

ZBI5 Zero-Bit Insertion removal (removes the 0 added after 5
1s)

ZBl6 Zero-Bit Insertion removal (removes the 0 added after 6
1s)

ADDIN Call your own packet decoder using the PacketPresenter

API routine APIDecode()

substring Substitute bytes in the stream (no spaces allowed)

Multiple decoders can be used and are processed in the order listed.

82 USBee DX Test Pod User’s Manual

SUBSTITUTIONS

Substitutions allow a sequence of bytes (up to 3) to be replaced with a different set (same size or less)
of bytes. They can only be used on bytestreams, not bitstreams. Substrings define the bytes input
and the bytes output. The Substrings must not contain any spaces. Examples of this are below:

[1]=[2] ; Replaces all 1s with 2s
[1]1[2]1=[3] ; Replaces all 1 immediately

; followed by 2 with 3
[11[21=[3]114] ; Replaces all 1 immediately

; followed by 2 with 3

; immediately followed by 4
[11[2]1([3]1=1[4] ; Replaces all 1, 2, 3 with 4
[11=[2]11[3]11[4] ; INVALID, the number of

; output bytes must be less

; than or equal to the input

As an example, the HDLC protocol uses the byte value 7Eh as the start and end flag of the packets and
replaces all 7Eh in the data with the bytes 7Dh followed by 5Eh. It also replaces all 7Dh in the data
with the bytes 7Dh followed by 5Dh. To remove this coding you would use the lines:

[7Dh] [5Eh]
[7Dh] [5Dh]=[7Dh]

FIELDS SECTION

Once the packet is delineated and decoded by the previous sections, it is ready to be displayed by the
PacketPresenter. Since each packet is made up of fields, the Fields section defines how the packet is
broken up into its fields and what to do with the field data.

FIELD LINES PROCESSING

During processing, the Fields Section is processed one Field Line at a time in the order that they are
listed in the FIELDS section. Each Field Line is parsed against the incoming data packets.

Once a single Field Line is successfully processed and output, the PacketPresenter starts over at the
top of the Filed Lines list for the next packet. This ensures that there is only one output packet for
each input packet for a given protocol.

There are 2 types of Field Lines. A Field Line can be conditional or unconditional. Unconditional Field
Lines are processed for any packet. Conditional Field Lines are only processed if certain fields match
a specific value.

Any Unconditional Field Line (no conditionals) generates an output line on the PacketPresenter
screen. Any Conditional Field Line that evaluates to True generates an output line on the
PacketPresenter screen. Any Conditional Field Line that evaluates to False is skipped and produces
no output line on the PacketPresenter screen.

The Field Lines should be listed with the conditional field lines first followed by an unconditional field
line to catch all packets that are not explicitly defined in the conditional field lines.

USBee DX Test Pod User’s Manual 83

UNCONDITIONAL FIELD LINES

Unconditional Field lines are parsed and decoded data is output for every packet that is input. The
Fields specify how to interpret the data and how to output the data.

CONDITIONAL FIELD LINES

Conditional Field Lines provide a means for defining packets whose contents vary based upon the
presence of a value in another field. An example of this is a packet that contains a Command Byte
that determines the format of the rest of the packet. A Conditional Field Line contains at least one
field in the packet that includes the =Value token in the input modifiers section.

If the data contained in the conditional fields of a packet matches the =Value specified for the field,
the packet is parsed and the data is output. If the condition field =Value does not match the
incoming data, then the processor moves on to the next Field Line until it reaches the end of the
Fields section.

FIELD LINE FORMAT

Each Field Line in the Fields Section has the keyword FIELDS followed by a series of individual Fields.
Individual fields in a packet are separated by commas. A Field line in the Fields Section defines an
entire packet from start to end and has the form:

Fields Fieldl,Field2,. . . ,FieldN

You can also insert a string to be printed out at that location in the packet by using the string ($)
operator before the string to be printed. Below is an example of a field line with one string added
between the fields.

Fields Fieldl, $String,. . . ,FieldN

Each field will be output with a Label and a Value. For String fields, the Label is blank and the Value is
the String.

FIELD FORMAT

Each field in the Field Line is defined using the following syntax and contains no spaces:
FieldName. InputModifiers (= value) .OutputModifiers

FieldName is the name of the field. No spaces, commas, semicolons, brackets, dollar signs, periods,
or quotes are allowed in the fieldname.

Input and output modifiers change the way incoming data and output data are formatted.
InputModifiers are a string of characters that represent how many bits are in the field and how the
input data is to be handled. First is the number of bits in the field, or N if the field is a variable length.
Next is any of the following:

- M: native bit order from that which came off of the bus (default)

84 USBee DX Test Pod User’s Manual

- L: inverted bit order from that which came off of the bus
- X or Y: which channel the data is on (for multiline busses)
- =Value: Indicates that this field MUST be this value for the entire line to be processed
(Conditional)
Each modifier is a single character and multiple format modifiers can be combined.
OutputMadifiers are a string of characters that represent how to output the contents of this data.

Output Modifiers are as follows:

Ignore - no output (entire field is ignored for output)

|
- D Decimal output
- H Hexadecimal output
- B Binary output
- A Ascii output
- TF True (nonzero) or False (zero)
- L Look up the text string to print out in a matching Lookup line

- *Value or /Value: a value to multiply/Divide the output value by

- +Value or -Value: a value to offset the output value by

- Sstring: string to print after the data (or in place of the data if the i flag is used). String
must be the last item in a field. No commas, quotes, semicolons or parenthesis allowed in
the string.

BUS EVENTS IN THE MIDDLE OF A PACKET

Sometimes a specific bus event plays a role in the packet format. To specify that a specific bus event
needs to occur at a specific time in the field sequence, place the single Bus Event value inside
brackets in the Field Line. Multiple events in a single value are not allowed, however consecutive
events are allowed. To indicate the absence of a specific bus event in the protocol, use the ! (Not)
operator.

For example, if the bus is 12C, use the following to require that a Start Bit is present between field1
and field2:

Fields Fieldl,[l],Field2

If there is a start bit between the 2 fields, then that Field Line will be processed.

And use the following to require that a Start Bit is NOT present between field1 and field2:
Fields Fieldl,[!l],Field2

If there is a start bit between the 2 fields, then that Field Line will not be processed.

The Bus Events are defined in Table 1. Bus Event Types.

USBee DX Test Pod User’s Manual 85

LOOKUP TABLES

Often fields contain values that mean something unrelated to the actual number of the data. Lookup
Tables provide a way to output a string of text instead of a data value for a field. For each field
wanting to use a lookup table, use the “L” output modifier in the field format and then define the
table in the FIELDS section using the LOOKUP keyword.

The format of the Lookup table is as follows:

LOOKUP Fieldname
[valuell=$stringl
[value2]l=$string2

Fieldname is the name of the field associated with this lookup table. valuen refers to the actual data
value of the field. stringn is the text string that is output instead of the valuen.

If a lookup entry is not present for the data value (not found in the Lookup Table or the Lookup Table
does not exist), then the data value is output.

For example, the following table will assign the text strings for various values of the data for the
CommandByte field. When the field CommandByte,8,L is processed, the strings are output instead of
the value

Lookup CommandByte

The Lookup Tables are only associated to the specific Protocol they are contained in. Therefore you
can have a CommandByte lookup table in ProtocolA that is different from a CommandByte lookup
table in ProtocolB. Within a single Protocol, you need to make sure that the Fieldnames are unique
for all Lookup Tables so that the PacketPresenter can determine which table to use.

EXAMPLES OF FIELD LINES AND FIELDS

JUST PLAIN DATA

Fields contain data that may or may not be of interest to the user. Many times the data is
information that just needs to be output to the viewer. Being binary data, each field may need to be
translated numerically to mean something. To output a field of data, you can specify the radix (if it
should be shown in Hex, Decimal, binary) as well as a gain and offset to scale the data. Finally you
can add a string to the field to complete the information. All scaling is performed first using floating
point and then the output formatting is applied.

Below is an example of a field to just output the data.

86 USBee DX Test Pod User’s Manual

Fields Volts.l6m.d*1.5-37.256SmV

This Field Line contains one field named “Volts”, which is 16 bits long in msbit first order. The output
is to be displayed in decimal format, multiplied by 1.5, offset by - 37.256 and finally appended with
“mV” before output to the PacketPresenter screen.

For an input packet as follows:
0000001100001100.

The output would be:

1132.744mV

which is the input 16 bits in msbfirst order (0x30C) times the gain of 1.5 plus the offset of -37.256
output in decimal format plus the “mV” string.

CONDITIONAL PACKET FORMAT

Using the Conditional input modifier, many different field arrangements can be defined for the same
packet. Common uses are for parameter fields that exist for different types of commands. If packets
contain commands that determine what the remaining fields are, this syntax defines what those
remaining fields are.

Below is an example of various packet formats based on a single command field.

Fields Command.4m=0.h,Address.8m.h
Fields Command.4m=2.h,Address.8m.h,Data.8m.h
Fields Command.4m=4.h,Paraml.8m.h,Param2.8m.h, Param3.8m.h

For an input packet as follows:

0010 00011101 00001000.

Followed by a packet:

0100 00011101 00001000 11111110.

The output would be:

I Command Address I Data

B 1D | o8

I Command Param1 Param2 Param3
| 1D 08 FE

which are the fields associated with the Command=2 and Command=4 Field Lines.

USBee DX Test Pod User’s Manual 87

STRING LOOKUP

Fields that can be better expressed as text strings can be outputted as such using a Lookup table.
Below is an example of a field that uses a lookup table.

[Fields]

Fields StartByte.8.H, CommandByte.8.L, EndByte.8.H
Lookup CommandByte

[0]=S$Read
[1]=$Write
[2]=$Seek
[3]=S$Loc
[4]=$Size

For an input packet as follows:
00100001 00000001 00001000.

The output would be:

I StartByte I Command I EndByte
[z | write | o8

which is the text associated with the Command Field 4 bits in msbfirst order (0010b = 2).

CONDITIONAL ROUTE OF DATA TO ANOTHER PROTOCOL

Many embedded protocols support multiple layers of protocol, where each protocol layer handles a
different set of services or functions. In these multilayer protocols, a field of data from one protocol
layer may be the input data to another layer of protocol. Routing this field of data to a new Protocol
is as easy as naming the Field the same name as the Protocol. If the Field name matches any
protocol, the entire data for that field is passed to that Protocol for processing.

Below is an example that shows a field being sent to a new layer (Layer2) of protocol when the
command field is a 1.

[Protocol]

name = Layerl

[Packet]

[Decode]

[Fields]

Fields Command.4=0.h,Address.8.h
Fields Command.4=1.h,Layer2.48.h

[Protocol]

name = Layer?2

[Packet]

[Decode]

[Fields]

Fields L2Command.4=0.h,RSSI.8.d
Fields L2Command.4=1.h,Q0S.16.d
Fields L2Command.4=2.h,Layer3.44.h

88 USBee DX Test Pod User’s Manual

PACKETPRESENTER ADD-IN API

The USBee DX PacketPresenter automatically processes many types of data streams. However, it
cannot decode custom coded data streams. Using the PacketPresenter Add-In API, the data stream
can be decoded to the basic data values for any custom coding.

The USBee DX software package includes a sample DLL project in Microsoft VC6 format (in the
installation directory of the USBee DX software) called AddIn that allows you to customize a decoder
for your data streams.

The DLL library called usbeeai.dll (USBee Add-In) has the following interface routine that is called by
the PacketPresenter if the ADDIN keyword is used in the DECODE section of the PacketPresenter
Definition File.

CWAV_EXPORT unsigned int CWAV_API APIDecode (
char *Protocol,
char bitIn,
char &bitoOut,
char reset);

This routine is called for each bit of data in the data stream. Protocol is the string name of the
Protocol being processed and allows you to create an add-in that handles many different kinds of
decoding. The parameter “reset” is set to a 1 for the first bit of a packet and 0 for all bits following.
The next bit from the stream is passed in using the parameter “bitin” (1 or 0).

After your code decodes the stream, you can either send back no data (return value of 0), or send a
new bits back using the “bitOut” pointer (one bit per char) and a return value of the number of bits

returned.

The default Add-In routine simply is a pass through so that the output data stream equals the input
data stream. Start with this library source code to add your custom decoding.

USBee DX Test Pod User’s Manual 89

SAMPLE PACKETPRESENTER ADD-IN DECODERS

Custom decoders can perform complicated decryption and byte or bit manipulation. Ignoring the
actual algorithm that is executed, these decoders may reduce, enlarge or keep constant the number
of bits in the data stream. The following examples are intended to show how these streams can be
shortened, lengthened or modified. Useful decoders will need to have the appropriate algorithms to
compute the true values of the output bits.

LOOPBACK DECODER

This Add-In simply loops back the data (out = in).

CWAV_EXPORT unsigned int CWAV_API APIDecode (char *Protocol, char bitIn, char *bitsOut, char
reset)

{

// This will be the Add-In routine that is called by the PacketPresenter
// when the ADDIN keyword is used in the DECODE section of the
// PacketPresenter Definition File.

// This routine is called for each bit of data in a data packet.

// The parameter "reset" is set to a 1 for the first bit of a packet and

// 0 for all bits following. The next bit from the stream is passed in

// using the parameter "bitIn" (1 or 0). After your code decodes the stream,

// you can either send back no data (return value of 0), or send new bits back

// using the "bitOut" pointer (one bit per char) and a return value of the number
// of bits returned. The default Add-In routine is simply is a pass through so

// that the output data stream equals the input data stream.

// Start with this library source code to add your custom decoding.

*bitsOut = bitlIn;

return(1); // Indicates that there is 1 return data bit

INVERTING DECODER

This Add-In inverts the packet data (out = Not(in)).

CWAV_EXPORT unsigned int CWAV_API APIDecode (char *Protocol, char bitIn, char *bitsOut, char
reset)

{

if (bitIn)
*bitsOut = 0;
else
*bitsOut = 1;
return(1); // Indicates that there is 1 return data bit

EXPANDING DECODER

This Add-In shows how to convert a stream to a larger stream (expanding the bits). In this case each
bit becomes two output bits.

CWAV_EXPORT unsigned int CWAV_API APIDecode (char *Protocol, char bitIn, char *bitsOut,
char reset)
{

*bitsOut++ = bitlIn;

*bitsOut++ = bitlIn;

return(2); // Indicates that there is 2 return data bits

90 USBee DX Test Pod User’s Manual

COMPRESSING DECODER

This Add-In shows how to remove bits from a stream (compressing the bits). In this case each bit pair
becomes a single bit, basically throwing away the first bit.

CWAV_EXPORT unsigned int CWAV_API APIDecode (char *Protocol, char bitIn, char *bitsOut,
char reset)

{

static everyother = 0;
if (reset) // Reset the state of the decoder if
reset=TRUE
everyother = 0;
if (everyother)
{
*bitsOut = bitlIn;
return(1); // Indicates that there is 1 return data

everyother = 0;

else
everyother = 1;

return(0); // Indicates that there are no return data bits

USBee DX Test Pod User’s Manual 91

MULTIPLE DECODERS

This Add-In shows how to use the Protocol string to selectively decode different types of packets.

CWAV_EXPORT unsigned int CWAV_API APIDecode (char *Protocol, char bitIn, char *bitsOut,
char reset)
{

static everyother = 0;

if (!strcmp(Protocol, “COMPRESS”)
{
if (reset) // Reset the state of the decoder if reset=TRUE
everyother = 0;
if (everyother)

{

*pbitsOut = bitIn;
return(1); // Indicates that there is 1 return data bit
everyother = 0;
}
else
everyother = 1;
return(0); // Indicates that there are no return data bits

else if (!strcmp(Protocol, “EXPAND”)

*pbitsOut++ = bitlIn;
*bitsOut++ = bitlIn;
return(2); // Indicates that there is 2 return data bits

}

// No matching decoder label found so just loopback the data
*pbitsOut = bitIn;

return (1) ;

PACKETPRESENTER DEFINITION FILE DEBUGGING

Creating your PacketPresenter Definition File can be made simpler using the Debug mode. To turn on
Debug mode, use the DebugOn keyword in a [DEBUG] section of the Definition File.

[Protocol]
name = I2CEEPROM
[DEBUG]
DebugOn ; Turns On Debug Mode.
; Comment it out to turn it off.
[Packet]

When debug mode is on, each packet is output twice in its raw form, showing the data values as well
as the events from the bus. The first debug line is the initial bus data. The second line is the bus data
after any decoding is completed. Following the debug lines are the PacketPresenter output packets
from this same data.

Below is a screen shot that shows the PacketPresenter that has Debug turned on.

92 USBee DX Test Pod User’s Manual

DATA | DATA

Laer: ket Dehu

Layer: Packet Debu DATA | DATA | DATA | DATA DATA | DATA | DATA | DATA

TP e T I TN I T TN R AT N N T

Layer: Packet Debu DATA | DATA | DATA | DA DATA | DATA | DATA | DATA

N T P T T T [Fa] oo | o |
E STA)

Laer: Packat Dehu
Layer: Packst Debug | DAT.
T . T

K2t K1 =505.us

PACKETPRESENTER SPECIFICATIONS

The PacketPresenter system has the following limits regarding file size, packets, fields, lookup tables

etc.

. 100K bytes per PacketPresenter Definition File
. 64K Data Records per Packet (min 64K bits, max 64K bytes)
. 7 Protocols

. 1024 Field Lines per Protocol

. 128 Fields per Field Line

. 64 Lookup Tables per Protocol

. 256 Lookup entries per Lookup Table

. 256 Decoder Substitutions per Protocol

. 3 Bytes per Substitution input or output

. 4 PacketPresenter Windows

. 2.1B bytes per PacketPresenter Output File

USBee DX Test Pod User’s Manual

93

EXAMPLE PROTOCOL FILES AND OUTPUT EXAMPLES

ASYNC PROTOCOL EXAMPLE

; Async Protocol Definition File
; This file defines the transfers to/from a custom device
; over an ASYNC bus
[Protocol]
name = ASYNCBus
bytewise
[DEBUG]
; DebugOn ; Uncomment this to turn on Debug Packets
[Packet]
[Start]
type = value
value = 40h; Start command
mask = FOh ; Mask out the channel number

[End]
type = timeout
timeout = 3000 ; 3ms timeout ends the packet

[Decode]
[Fields]

Fields
Start.4.h,
Channel.4=1.h,
Command.8.h,
X.16.d/20.48-25%g,
Y.16.d/20.48-25%qg,
7.16.d/20.48-258q,

Rest.N.h ; Rest of the packet
Fields
Rest.N.h ; Rest of the packet

94 USBee DX Test Pod User’s Manual

File View Setup Help

o et o o ™ W S E

[Do |

Pod Status |
1 [CcBUS ISTARTY CHANNEL | v | z [resT|
403 - Run Time: 375.795ms 4 i .25g | 1.55g | 0.7 8g 5
e

USBee 0K Single 1|

Async| SDebug | ®|= l—IIHIII\H | Y Y Y
Async| HDebug = @|Z T
zZ =z z =
E T ED
zZ =z z = l
AOEE Tl |
EIEIEIE ! USBeeDXPadeeQPnesenlE)l
z|z|=| =y -
File Edit View Window
z| =
FE £5+ Async-4 Decode
z| =
b2k 259.3443ms, Rsync-4, CH4 41 CO 02 07 0z 28 41 CO 02 0€ 0
FIE] 431.8247ms, Async-4, CH4 02 06 02 28 02 10 02 08 02 27 O:
F1E) 587.9587ms, Rsync-4, CH4 28 02 10 D9 42 41 CO 02 06 02 28 02 10 D9 42 41 CO 02 06 02 28 02 10 DS 4
F1E] 754 .9108ms, BRsync-4, CH4 10 D% 42 41 CO 02 OC 02 28 02 10 DS 42 41 CO 02 06 02 28 02 10 DS 42 41 Ct
940.9932Zms, Async-4, CH4 42 41 CO 0Z 07 02 2E 02 OF D9 42 41 CO 02 06 02 28 02 10 DS 42 41 CO 02 0¥
ST z|= 1.1434373s , Rsync-4, CH4 CO 0Z 06 0Z 28 0z 10 DS 42 41 CO 02 06 0Z 28 02 10 D9 42 41 CO 02 0& 0!
1] I g
/Div Offset | /Div Offset a
I
JE3 3 | NS e e £3- Async-4 PacketPresenter
W v = |
0.34g | 1.95g | 0.93g| D2

@

®2toX1 = B0 5538ms

USBee DX Test Pod User’s Manual

95

[2C PROTOCOL EXAMPLE

; I2C EEPROM Protocol Definition File
; This file defines the transfers to/from an I2C EEPROM
; with 8 bit address

[Protocol]
name = I2CEEPROM
bytewise
[DEBUG]
; DebugOn ; Uncomment this to turn on Debug Packets
[Packet]
[Start]
type = event
event = 1 ; Start Bit
[End]
type = event
event = 0Ah ; Stop Bit Or NACK
[Decode]
[Fields]

; Device Not Present

Fields
$SDevice Not Present, ; Printout this label if match
SlaveAddress.7m.h,RW.1.1, ; Control Byte
Address.8m.h, ; 1 byte address
[81 ; followed by a NACK condition

; Set Address

Fields
$SetAddressCmd, ; Printout this label if match
SlaveAddress.7m.h,RW.1=0.1, ; Control Byte
Address.8m.h, ; 1 byte address
[2] ; followed by a STOP condition

; Write Command

Fields
SWriteCommand, ; Printout this label if match
SlaveAddress.7/m.h,RW.1=0.1, ; Control Byte
Address.8m.h, ; 1 byte address
[rin, ; NO START condition
WriteData.Nm.h ; Written Data (Variable N)
; Current Address Read
Fields
SCurrentRead, ; Printout this label if match
SlaveAddress.7m.h,RW.1=1.1, ; Control Byte
ReadData.Nm.h ; Read Data (Variable number N)
; Random Read
Fields
$RandomRead, ; Printout this label if match
SlaveAddress.7m.h,RW.1=0.1, ; Control Byte
Address.8m.h, ; 1 byte address
[11, ; START Condition
SlaveAddress.7/m.i,RW.1=1.1, ; Control Byte
ReadData.Nm.h, ; Read Data (Variable number N)

96 USBee DX Test Pod User’s Manual

% USBee DX Oscilloscope and Logic Analyzer - PPI2C Small EEPROM.uld

(=@ =]]

File View Setup Help

{1 T Y

LU 1 1 I I
00O R0RE 0000010 00RE 000 BORO R RO TR RN
JLALILE PR ML

Signal 4

£ USBee DX PacketPresenter

=l=] % |

[File Edit View Window

r CH1 CH2 —Trig
/Div Offset |/Div Offset

B34 12C-2 Decode

263_4060ms, I12C-2, [S] Al Read 02 J§

B3+ 12C-2 PacketPresenter

| |SLAVEADDRESS | ADDRESS |

i~ Pod Status

isition
4403 ~ Run I—4

USBes 0K Single F

@

SLAVEADDRESS|

i

—
»

H2toX1 =-216us

USBee DX Test

Pod User’s Manual

97

SPI PROTOCOL EXAMPLE

; Cypress RF IC Protocol Definition File
; This file defines the transfers to/from a CY6936 RF IC
; using the SPI bus

[Protocol]
name = CypressRFIC
bytewise
[DEBUG]
; DebugOn
[Packet]
[Start]
type = event
event = 1 ; SS goes active
[End]
type = event
event = 2 ; SS goes inactive
[Decode]
[Fields]

; RX_IRQ_STATUS_ADR Read and Write Command

Fields Dir.ly=0.L, Inc.ly.tf, Address.6y=07h.L, Dummy.8x.i, RXOW.lx.h,
SOPDET.1x.h, RXB16.1x.h, RXB8.1lx.h, RXBl.lx.h, RXBERR.1lx.h, RXC.1lx.h,
RXE.1x.h

Fields Dir.ly=1.L, Inc.ly.tf, Address.6y=07h.L, RXOW.ly.h, SOPDET.ly.h,
RXB16.1y.h, RXB8.ly.h, RXBl.ly.h, RXBERR.ly.h, RXC.ly.h, RXE.ly.h

; TX_TIRQ_STATUS_ADR Read and Write Command

Fields Dir.ly=0.L, Inc.ly.tf, Address.6y=04h.L, Dummy.8x.i, 0S.1lx.h, LV.1x.h,
TXB15.1x.h, TXB8.1lx.h, TXBl.lx.h, TXBERR.lx.h, TXC.lx.h, TXE.lx.h

Fields Dir.ly=1.L, Inc.ly.tf, Address.6y=04h.L, 0S.ly.h, LV.ly.h, TXB15.1ly.h,
TXB8.ly.h, TXBl.ly.h, TXBERR.ly.h, TXC.ly.h, TXE.ly.h

; RX_BUFFER_ADR Read and Write Command

Fields Dir.1ly=0.L, Inc.ly.tf, Address.6y=21h.L, Dummy.8x.1i
RxData.Nx.h
Fields Dir.ly=1.L, Inc.ly.tf, Address.6y=21h.L, RxData.Ny.h

; TX_BUFFER_ADR Read and Write Command

Fields Dir.ly=0.L, Inc.ly.tf, Address.6y=20h.L, Dummy.8x.1i
TxData.Nx.h
Fields Dir.ly=1.L, Inc.ly.tf, Address.6y=20h.L, TxData.Ny.h
Fields Dir.ly=0.L, Inc.ly.tf, Address.6y.L, Dummy.8x.1,
ReadData.Nx.h
Fields Dir.ly=1.L, Inc.ly.tf, Address.6y.L, WriteData.Nmy.h
Lookup Dir
[0]=$Read
[1]=$Write

Lookup Address
[00h]=$CHANNEL_ADR
[01h]=$TX_LENGTH_ADR
[02h]=$TX_CTRL_ADR
[03h]=$TX_CFG_ADR
[04h]=$TX_IRQ STATUS_ADR
[05h]=$RX_CTRL_ADR
[06h]=$RX_CFG_ADR
[07h]=$RX_IRQ_ STATUS_ADR
[08h]=$RX_STATUS_ADR
[09h]=$RX_COUNT_ ADR
[0ah]=$RX_LENGTH_ADR
[0bh]=$PWR_CTRL_ADR
[0ch]=$XTAL CTRL_ADR
[0dh]=$I0_CFG_ADR
[0eh]=$GPIO_CTRL_ADR
[0fh]=$XACT CFG_ADR
[10h]=$FRAMING_CFG_ADR
[11h]=$DATA32 THOLD ADR
[12h]=$DATA64_THOLD_ ADR
[13h]=$RSSI_ADR
[14h]=SEOP_CTRL ADR
[15h]=$CRC_SEED LSB_ADR
[16h]=$CRC_SEED_MSB_ADR
[17h]=$TX_CRC_LSB_ADR
[18h]=$TX_CRC_MSB_ADR
[19h]=$RX_CRC_LSB_ADR

98 USBee DX Test Pod User’s Manual

[lah]=$RX_CRC_MSB_ADR
[1bh]=$TX_OFFSET_LSB_ADR
[1ch]=$TX_OFFSET_MSB_ADR
[1dh]=$MODE_OVERRIDE_ ADR
[leh]=$RX_OVERRIDE_ADR
[1£h]=$TX_OVERRIDE_ADR
[26h]=$XTAL_CFG_ADR
[27h]=$CLK_OVERRIDE_ADR
[28h]=SCLK_EN_ADR
[29h]=$RX_ABORT ADR
[32h]=$AUTO_CAL_TIME_ ADR
[35h]=SAUTO_CAL_OFFSET_ADR
[39h]=$ANALOG_CTRL_ADR
[20h]=$TX_BUFFER_ADR
[21h]=$RX_BUFFER_ADR
[22h]=$SOP_CODE_ADR
[23h]=$DATA_CODE_ADR
[24h]=$PREAMBLE_ADR
[25h]=$MFG_ID ADR

[Protocol]
name = RxData
bytewise
[DEBUG]
; DebugOn
[Packet]
[Start]
type = next
[End]
type = event
event = 127 ; All Data passed in
[Decode]
[Fields]
; RX_TRQ_STATUS_ADR Read and Write Command
Fields ReceiveData.N.h
@B USBee DX Oscilloscope and Logic Analyzer - SPI-CypressRFIC Short.uld . =[=] % J
File View Setup Help
/2 ——
FEIET L L L L
Z[=]= I [I LI LI] [
EETE] | S — ——— j ————
R MOSI T E —— L P —s TR T L
LEIC -".}USBeeDXPadnelPl:s_ . . " =[] &]
L 3E-1E] - —
=z ol File Edit View Window
=0 | 5. 5PI3 Decode

1B 25 07 01 DF 15 25 AC 0l

€587ms, SDI-3, MISO,MOSI: 08 09
7180ms, SPI-3, MISO,MOSI: 00 B0 00 08

Transmitter's Eun'lgulallu

R_IBAT -B_IBAT

Div Offsst |/Div Offset ﬁ

7270ms, SPI-2, MISO,MOSI: 00 85 00 82
7270ms, SPI-3, MISO,MOSI: 00 10

7270ms, SPI-3, MISO,MOSI: 00 18 00 58

7270ms, SBI-3, MISO,MOSI: 00 21 02 38

7270ms, SPI-3, MISO,MOSI: 00 20 05 78

7270ms, SPI-3, MISO,MOSI: BO 22 00 15 88 BS 21 BO E3 &8 3& 21 72 E3
7270ms, SPI-3, MISO,MOSI: OC 8C

7270ms, SPI-3, MISO,MOSI: OF A8

7270ms, SPI-3, MISO,MOSI: FA 20

R R R R R R R R R R R

11 15 83—

B2 sA 28

[l E3- SPI-3 PacketPresenter
= s Layer: CYPRESSRFIC W'RITEDATA
o Time: 4.493ms W False

Pod Status

FECIE
USBes OK

“]

GREEM = REMOTE IBAT. ﬂi

Seconds/Division il = :
4 »
Y I SR S -EE RXDATA

11 83 OF 82 80

Fals=

—Acquisition

run | [

07 DF 25 01 LSAC 82 80 1A 51 09 03 09

aver: CYPRESSREIC] DIR | INC ADDRESS | WRITEDATL

Single I_E Kl

H2 101 =-4.5038ms

USBee DX Test Pod User’s Manual

99

CAN PROTOCOL EXAMPLE

CAN Protocol Definition File
This file defines the transfers to/from a
over a the CAN bus

custom CAN device

Uncomment this to turn on Debug Packets

[Protocol]
name = CANBus
bitwise
[DEBUG]
; DebugOn ;
[Packet]
[Start]
type = event
event = 1 ; Start of CAN packet
[End]
type = event
event = 2 ; End of CAN packet
[Decode]
[Fields]

; Extended Frame Format
Fields SOF.1.1,
Rsrv.2.1,

IDA.11.h,
Length.4.h, Data.N.h, CRC.15.h, CRCDel.l.h,

SRR.1.h, IDE.1=1.h, IDB.18.h, RTR.1.h,

ACK.1l.h, ACKDel.l.h, EOF.7.h

; Base frame format
Fields SOF.1.1,

Data.N.h, CRC.

EOF.7.h

ID.11.h, RTR.1.h,

IDE.1=0.h, Rsrv.l.i, Length.4.h,
15.h, CRCDel.l.h, ACK.1l.h, ACKDel.l.h,

& USBee DX Oscilloscope and Logic Analyzer - CAN Capture.uld

- =[] & |

File View Setup Help
z T H\IIII\II\ rrrmrrr T 1
f =z It =
I 2 31 Uses DX Packetiresenier sumec—— [EMEEED
| sz
r—
BT File Edit View Window
: : 'l = caN-0 Decode ===
I
z mjf| | 43-9132ms, CAN-0, 23-bitID:00000001,RTR:0,Contzol:0s,Dataz00,00,00,00,00,00,00,00,CRC: 3684, ACK:
b £0_5522ms i
& 1 A , 29-bi L
T 85_4865ms, CAN-0, 11-bitID:=001, 3
5 97.9857ms, CAN-0, 11-bitID:001,RTR:0,Control:02,Dataz00,00,,,,,,,CRC:2ACD,ACK:0
= 114_6407ms, CAN-0, 11-bitID:=001,RTR-0,Control:04,Data:1Z,34,43,21,,,,,CRC:6215,ACK:0
139.6352ms, CAN-0, 11-bitID:001,RTR:0,Control:08,Data:00,00,00,00,00,00,00,00,CRC:1F40,ACK
= 164_6137ms, CAN-0, 11-bitID:123,RTR:-0,Control:0a,Data:=00,11,22,33,44,55, 66,77, CRC:0BD4, ACK:0
= 187.5008ms, CAN-0, 11-bitID:1FF,RTR:0,Contzol:07,Data:FF,FF,FF,FF,FF,FF,FF,,CRC:21B2, ACK:0
z 210.4150ms, CAN-0, 29-bitID:00000FFF,RTR:0,Contrel:07,Data:¥¥,FF, FF, FF, FF, FF, F¥, , CRC:4C56, ACK:0
= g [260-3605ms, CaN-0, 23-bitID:00000001,RTR:0,Control:=08,Data:00,00,00,00,00,00,00, 00, CRC: 3684, ACK:
277_0115ms, CAN-0, 29-bitID:00000001,RTR:0,Contrsl:04,Dataz00,00,00,00,,,,,CRC:6216, ACK:0
293_6543ms, CAN-0, 29-bitID:00000001,RTR:0,Contrel=04,Data-12,34,43,21,,,, ,CAC:1B
301.9457ms, CAN-0, 11-bicID:001,RTR:0,Concrol:0d,CRC:2213,ACK:0 =

/Div Offset |/Div Offset i
HIEIE B T
i [

i | »

B3+ CAN-0 PacketPresenter

IEEHIHHE!EEIEE@IEE

ﬁmﬁgmmmﬁgmmmrﬂ

Eﬁiﬁ!ﬂﬁﬂﬂﬁﬂﬁ!ﬁﬂﬂ |

.Bus
1 Isﬁﬂﬁﬂﬂu!lﬂlﬁﬂilﬂi Eﬂﬁﬁ!l‘lﬁﬁﬂﬁ!ﬁﬂﬂ
~Pod Status | Jms: LLuz
=l !EE.HMNEEE.EEEHEE lﬂﬂﬂﬂlﬁﬂiﬁﬂﬁﬁ!l‘lﬁﬁﬁﬁ!iﬂﬂ
w0 - Fun Ti 2us | 001 B il
-1 b
UsBe=0K || Single | [| ’
@ 21031 = 43 3182ms A

100

USBee DX Test Pod User’s Manual

1-WIRE PROTOCOL EXAMPLE

; One Wire Protocol Definition File
; This file defines the transfers to/from some 1-Wire devices
; using the 1-Wire bus

;

[Protocol]

[DEBUG]

[Packet]

CRC.8.h

name = OneWireBus

bytewise

; DebugOn

[Start]

[End]

[Decode]
[Fields]

Temp.16.d, TH.8.h,

CRC.8.h

CRC.8.h

CRC.8.h

USBee DX Test Pod User’s Manual

; Uncomment this to turn on Debug Packets

type = event
event = 2 ; Presence Pulse

type = event
event = 1 ; Reset Pulse

; These fields are used by Maxim/Dallas Digital Thermometers

Fields ROMCommand. 8=F0h.$Search Rom, Data.N.h
Fields ROMCommand.8=33h.$Read Rom, Family.8.h, SerialNumber.48.h,
CRC.8.h

Fields ROMCommand.8=55h.$Match Rom, Family.8.h, SerialNumber.48.h,

Fields ROMCommand.8=CCh.$Skip ROM, Function.8=44h.$ConvertTemp
Fields ROMCommand.8=CCh.$Skip ROM, Function.8=BEh.S$Read Scratchpad,

TL.81.h, Rsvd.l16.i, Remain.8.h, CpC.8.h, CRC.8.h

; These fields are used by Dallas Serial Number iButtons
Fields ROMCommand.8=33h.$Read Rom, Family.8.h, SerialNumber.48.h,

Fields ROMCommand.8=0Fh.$Read Rom, Family.8.h, SerialNumber.48.h,

; These packets are used by 1-Wire EEPROMS

Fields ROMCommand.8=33h.$%Read Rom, Family.8.h, SerialNumber.48.h,

Fields ROMCommand. 8.h, MemoryCommand.8=0Fh.$Write Scratchpad,
Address.l6.h, Data.N.h

Fields ROMCommand.8.h, MemoryCommand.8=AAh.$Read Scratchpad,
Address.1l6.h, ES.8.h, Data.N.h

Fields ROMCommand. 8.h, MemoryCommand.8=55h.$Copy Scratchpad,
AuthCode.24.h

Fields ROMCommand. 8.h, MemoryCommand.8=F0h.$Read Memory,

Address.16.h, Data.N.h

101

B USBee DX Oscilloscope and Logic Analyzer - PPOneWirelst_trace.uld

File View Setup Help

rCH1 CH2—
/Div Offset | /Div Offset

71 USBes DX PacketPresenter —

File Edit View Window

1
o

]

E

i~ Pod Status

403 -

USBee OK

Seconds/Division

7 —

B3+ 1-Wire-0 Decode

g

27 1083ms, 1Wire-0,
27.3110ms, 1lWire-0,
44_8238ms, 1Wire-0
45 _0260ms, 1Wire-0
40.1410ms, 1Wire-0,

ms
61.6457ms, lWire-0,
61_8485ms, 1Wire-0
76.8902ms, lWire-0,
77_9307ms, 1Wire-0,
75.2960ms, 1Wire-0,
+ .

Reser Pulse
Dresence Bulse CC FO 00 00 CA AF 2B 1B DB OF 1B FD 03 05 FF 00 11 02 OF 48 3 &
Reset Pulse

Reser Dulse B
Dresence Pulse FO 55 AB AR 92 24 49 32 24 49 55 2B 55 92 54 49 92 D4 42 32 §
€C OF 20 00 00 00 FF 01 FF FF FF FF E6 DA

Reset Fulse

Reset Pulse

Presence Bulse CC 55 20 00 07

Reset Fulse

Dresence Bulse

Reser Pulse x2

Run I—

Single IJ

E3 - 1-Wire-0 PacketPresenter
Layer: ONEWIREBUS | ROMECOMMAND DATA =

Time: 227.311ms

Laver: ONEWIREBUS IROMCOMMANDH MEVMORYCOMMAND __

Time: 245,026ms

Layer: ONEWIREBUS |ROMCOMMAND e O MMAND m DATA

Time: 340,3428ms

Laver: ONEWIREBUS
Time: 250.7655m;

Read Memory

Write Scratchpzd

ROMCOMMANDI| MENOR

Layer: ONEWIREBUS |ROMEOMMANSH MEh ORYCOMMAND | AUTHCODE

Time: 361,8485ms

Laver: ONEWIREBUS |ROMEOMMANDH e ORYCOMMAND _ DATA

Time: 1,04061285

Copy Seratchpad 200007

write Seratchpad

Em

K2toX1 = 28.5176ms

102

USBee DX Test Pod User’s Manual

PARALLEL PROTOCOL EXAMPLE

; Sample Parallel Protocol Definition File
; This file defines the transfers to/from an unique device
[Protocol]
name = ADevice
bytewise
[DEBUG]
; DebugOn
[Packet]
[Start]
type = signal
signal = 14
level = 0

[End]
type = length
Bytelength = 21

[Decode]
[Fields]
Fields

StartByte.8m.d*2+45mV,
CommandByte.81.L,
FLength.8m.h,
SlaveAddress.7m.h,RW.1.L,
Long.32m.h,
8Bytes.64m.h,
NextLayer.Nm.h

[Protocol]
name = NextLayer
bytewise
[Packet]
[Start]
type = next
[End]
type = Event ;End of a packet is signaled by a event
event = 127; Means the end of the data (only for higher
layers)

[Decode]
[Fields]
Fields
Rest.N.h ; Just print out all the bytes

USBee DX Test Pod User’s Manual 103

48 USBee DX Oscilloscope and Logic Analyzer - PPParallelTest.uld

[=[@] =]

File

View

Setup

Help

B3 Parallel-8 PacketPresenter =]
Lave, e[sTarTEYTE| CoMMANDEYTE F!sm SLAVEADDRESS| NEXTLAYER =
Tima: 3.413m oy 0 00 7E [1] {F2 £1 FO EF EE
One
/Div Off La NI LAYER REST
Time: 3.4145ms 2 F1 EF E
Layer: ADEVICE | STARTBYTE | COMMANDBYTE | FLENGTH | SLAVEADDRESS LONG BBVTES. NEXTLAVER
I_ 87ms S514mv 7F FD 7E 0 | FBFAFIF8 | F 4 F2 Fi ED B
L =l
»
£3: Parallel-8 Decode =]
3.4015ms, Parallel-B8, 8E 8D BC 8B BA 85 88 B87 86 85 84 83 B2 81 80 -
3.4028ms, T7E 7D 7C 7B TR 79 78 77 7€ 75 74 73 72 71 70
3.4042ms, 6E 6C 6B 6R 69 €8 €7 €6 65 64 €3 €2
3.4055ms, SE 5D 5C 5B S5A 59 58 57 56 55 54 53 52
3.40&8ms, 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42
3.4082ms, 3E 3D 3C 3B 3R 35 38 37 36 35 34 33 32
3.4095ms, 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22
3.4108ms 12
Use
H2toX1 =1.1727ms A
— —

Paraiel| Parallel8

File

Edit

View

indow

104

USBee DX Test Pod User’s Manual

SERIAL PROTOCOL EXAMPLE

7

’
’

Serial Protocol Definition File
This file defines the transfers from a serial device

[Protocol]

[
[

name =
bitwise
DEBUG]
; DebugOn
Packet]
[Start]
type =

packet

value

bits =

mask =
[End]

type =

bitlength = 64 ;

[Decode]
[Fields]

SerialBus

; Uncomment this to turn on Debug Packets

value ;
= 6211h ;
16 ;
FFFFh
length

; Send out the bits of the packet

Fields Start.l16.h, Nine.9.h,

End of command after 64 bits

Seven.7.h, Rest.N.Db

Look for a value in the data to start the

NOTE: This value is assumed MSbit first in
the data stream!

@ USBee DX Osdilloscope and Logic Analyzer - PPSerialCapture.uld

[=[E] ®

File View Setup Help

=z ==
FEIEIE w
Serid | Serial? zm|z|zm|m
Serial| Senabs == |z|= - - — =l
Serad| Senald @3 m| T[] £} USBee DX PacketPresenter ”.”.F"..- = —— =y NN]
Zz=Z| ==
e
SiEinE File Edit View Window
Z 2| == .
£3" Serial-2 Decode [=&E]rE=]
la 5.1573ms, Serial-2z, AA 11 22 33 S
n 5.2832ms, Serial-Z2, AA 11 2Z 33 F
T 5.41d3ms, 2z 33
[} 5.5533ms, 22 33 =
Signal C il :
t
H
n &
“tm CH2 | Trig 6.3213ms, Sezial-z, AA 11 22 33
Div Offsst | /Div Oftset| '3 6.4472ms, Serial-2, AA 11 22 33
= i = e H 6.5782ms, Serial-z, AA 11 2Z 33
€.7733ms, Serial-Z2, AA 11 2Z 33
T 6.8993ms, Serial-z, AA 11 ZZ 33 -
L] SEeE=]
2o o o
lrsel:nnds.ﬂ]' i | .
Pod Status Acquisition |

Mo =] || e |

USBee OK Single |'4

@

£311

S NINE
068

H2toK] =-027.us

USBee DX Test Pod User’s Manual

105

USB PROTOCOL EXAMPLE

; USB Bus Protocol Definition File
; This file defines the transfers to/from a custom USB device

;

[Protocol]
name = USBBus
bitwise
[DEBUG]
; DebugOn ; Uncomment this to turn on Debug Packets
[Packet]
[Start]
type = event
event = 1 ; Setup/In or Out found
[End]
type = event
event = 6 ; ACK, NAK or Stall found or no handshake found
[Decode]
[Fields]

; Any Packet - No Response
Fields Sync.8.i, PID.8.L, Addr.71.d, EP.41.d, CRC5.5.i, ; Token

[4] ; No Handshake

; Setup - Nakd ; Token

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, HS.8=01011010b.L ; Handshake

; IN - Nakd

Fields Sync.8.i, PID.8=10010110b.L, Addr.7L.d, EP.4L.d, CRC5.5.1,
Sync.8.i, HS.8=01011010b.L ; Handshake

; OUT - Nakd

Fields Sync.8.i, PID.8=10000111b.L, Addr.7L.d, EP.4L.d, CRC5.5.1,
Sync.8.i, HS.8=01011010b.L ; Handshake

; Setup

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,
bRequest.8L=1.$Clear Feature, bValue.l6L.h, bIndex.16L.H,
bLength.16L.H, CRCl16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1i,
bRequest.8L=0.$Get Status, bValue.l6L.h, bIndex.l6L.H,
bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1i,
bRequest.8L=8.$Get Configuration, bValue.l16L.h, bIndex.l16L.H,
bLength.16L.H, CRCl16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,
bRequest.8L=6.5Get Descriptor, bvValueL.8L.I, Type.8L.L,
bIndex.16L.H, bLength.l16L.H, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,
bRequest.8L=16.$Get Interface, bValue.l6L.h, bIndex.1l6L.H,
bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1i,
bRequest.8L=5.$Set Address, Address.l16L.h, bLength.1l6L.1i,
bLength.16L.i, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,
bRequest.8L=9.5Set Configuration, Config.16L.h,
bLength.16L.i, bLength.16L.i, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,
bRequest.8L=7.$Set Descriptor, bValue.l6L.h, bIndex.1l6L.H,
bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L

Fields Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1i,
bRequest.8L=3.$Set Feature, bValue.l6L.h, bIndex.l6L.H,
bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L

106 USBee DX Test Pod User’s Manual

Fields

Fields

Fields

; IN

Fields

; OUT
Fields

Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.i,
Sync.8.i, PID.8.L, Rtype.8.1,

bRequest.8L=10.5$Get Interface, bValue.l6L.h, bIndex.l16L.H,
bLength.16L.H, CRC1l6.16.i, Sync.8.i, HS.8.L

Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1,

bRequest.8L=11.$Set Interface, AltSetting.16L.h,

Interface.16L.H, bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.

Sync.8.i, PID.8=10110100b.L, Addr.71.d, EP.41.d, CRC5.5.1,
Sync.8.i, PID.8.L, Rtype.8.1i,

bRequest.8L=12.$Sync Frame, bValue.l6L.h, bIndex.16L.H,
bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L

Sync.8.i, PID.8=10010110b.L, Addr.7L.d, EP.4L.d, CRC5.5.1,
Sync.8.i, PID.8.L, InData.NL.h, CRC16.16.1, ; Data
Sync.8.i, HS.8.L ; Handshake

Sync.8.i, PID.8=10000111b.L, Addr.7L.d, EP.4L.d, CRC5.5.1,
Sync.8.i, PID.8.L, OutData.NL.h, CRC16.16.1, ; Data
Sync.8.i, HS.8.L ; Handshake

; Catch all
Fields Data.NL.h

Lookup

Lookup

Lookup

Type
[1]=$Device
[2]=$Config
[3]=$String

PID
[11000011b]=SDATAO
[11010010b]=$DATAL
[01001011b]=SACK
[01011010b]=$NAK
[01111000b]=$STALL
[10110100b]=$SETUP
[10000111b]=S0UT
[10010110b]=$IN
[10100101b]=$SOF

HS
[01001011b]=$ACK
[01011010b]=SNAK
[01111000b]=$STALL

USBee DX Test Pod User’s Manual

L

107

= a5

&8 USBee DX Oscilloscope and Logic Analyzer - PPUSBTestuld N

File View Setup Help

z|=
=k - —
/= .Ms&emnﬁ 1 =[E
5PL-3 BE
F b 1ot File Edit View
:: : £3+ USB-0 PacketPresenter
|
z|z | EEI-EH-E- E= =
Tlms 162, D4l.5ms IN 2 B4 04 EU [Dl 0001 02 | ACK
yer: USBBUS [INDATA H
zlzlz Time: 163.0415ms I 2 0 |D 1 0100 ACK
T Z| D USBBUS
z|z|=
5P SPI-11 T|Z|D
z|z|=
Z|D
Z|T
E|D

Transmitter's Configuration -

TxISYS - TXICC —- Trig —

[Div Offset | /Div Offset H

| TveE | BinDEX | ELEHuTH -

Config | 0000

14 o s =

= = === D 05 02 3B 00 02 01 00 AD | ACK.
INDATA

O, Ot 7.2mh | 0| 2109 04000001 03 01 | ACK

[epRinl inoata] Hs | I
0 D 1

0100092111 01 0001 | ACK

INDATA

| moata] HS |
0 | DATAO | 22 24 00 07 05 81 03 08 | ACK

EEI-IE- INDATA. =

00 DA 09 04 01 00 01 03 | ACK

2 e
o

INDATA
010200092111 0100 ACK

=
Pod Status Acquisition Time: 177.0407ms

403~ Fun I_4
USBee (K. Single |_E

%2 to X1 = 453.5813ms A

108 USBee DX Test Pod User’s Manual

PS2 PROTOCOL EXAMPLE

; PS2 Protocol Definition File
; This file defines the transfers from a PS2 device
[Protocol]
name = PS2Bus
bytewise
[DEBUG]
; DebugOn ; Uncomment this to turn on Debug Packets
[Packet]
[Start]
type = next ; Every byte is the start of the next packet
CHANNELXORY ; Either Device to Host or Host To Device
[End]
type = TIMEOUT
TIMEOUT = 5000 ; End of command after 5Smsec
[Decode]
[Fields]

; Setting LEDs after command

Fields [1], $Device To Host, $Key Down, Scancode.8x.h, [2],
SHost To Device, HostCommand.8y=EDh.$Set LEDs,
Ack.8x.i, Parameter.5y.i, Caps.ly.tf, Num.ly.tf,
Scroll.ly.tf, Ack.8x.1i

Fields [1], $Device To Host, $Key Down, Scancode.8x.h, [2],
SHost To Device, HostCommand.8y.h, Ack.8x.1i,
Parameter.8y.h, Ack.8x.1i

; Device to Host
Fields [1], $Device To Host, $Key Up, Release.8x=F0Oh.h,

Scancode.Nx.h

; All other scancodes
Fields [1], $Device To Host, $Key Down, Scancode.Nx.H

; Host to Device
Fields [2], $Host To Device, Command.Ny.h

USBee DX Test Pod User’s Manual

109

& USBee DX Oscilloscope and Logic Analyzer - PS2Capture.uld . =[E] % |

File View Setup Help.

~ Pod Status

403 -

USBes OK

A:qulsiliun1

Fun |13
Single |JE

L N T TR T T e e e mrnemmerim 1
=23 [LICICLY LI IS A (L [
ziz|= I LILL| LI O o [I T O L LN B
z(z @
2 | |{ "3 Ushee DX PacketPresenter il | l=[=] =]
zzz - - -
Siais File Edit View Window
25 ZM & ps/2-2 PacketPresenter (===
SIEIEY o -
===z ire: 472 aD0OmE | Device
z [z |z
HEIEL |
BEE |
HEIE]
z[z|z| La S —_
HEIE] Time: 283.6268ms | Devi
i Tri HOSTCOMMAND
La 2BUS _

Time: 3L52592m§ Devi Host | K |
= __

s S |5
- Dev
o |

Il
Tima: 495.2905ms | Device T
—_ NCODE I | HOSTCOMMAND 3 SCROLL
D 58 Set LEDs False False
»
#2031 = -44.1378ms A

110

USBee DX Test Pod User’s Manual

FILE SAVE, SAVE BETWEEN CURSORS, OPEN AND EXPORT

Using the File menu functions, you can save, open or export the current set of configuration and trace
sample data.

Choose the menu item File | Save As to save the current configuration and sample data to a binary
ULD file.

Choose the menu item File | Save Between Cursors to save the current configuration and sample data
that is contained between the X1 and X2 cursors to a binary ULD file. Use this menu item to make
smaller trace files that contain only the information that you are interested in. The minimum sample
size for the Save is 200K samples. If the X1 and X2 contain less samples than 200K, the save will start
at the first cursor and go for 200K samples.

To load a previously saved waveform and display it, choose File | Open and specify the filename to
load. This waveform will then be displayed as it was saved.

OUTPUT FILE FORMAT

The following is the Visual Basic source code that saves the ULD file format used by the Logic
Analyzer/ Oscilloscope and Signal Generator application.

Write #1, "USBee DX Data File " + Format (Date, "LONG DATE")
Write #1, "WaveHighlighted", WaveHighlighted

For x = 0 To 15
Write #1, "BusType" & str(x), BusType(x)
Write #1, "Bus" & str(x), Bus(x)
Write #1, "ShowVal" & str(x), ShowVal (x)
Write #1, "HexVal" & str(x), HexVal (x)
Write #1, "Delimiter" & str(x), Delimiter (x)
Write #1, "ShowAll" & str(x), ShowAll (x)
Write #1, "BytesPerLine" & str(x), BytesPerLine(x)
Write #1, "Channels"™ & str(x), Channels (x)
Write #1, "ClockSignal" & str(x), ClockSignal (x)
Write #1, "UseClock" & str(x), UseClock(x)
Write #1, "ClockEdge" & str(x), ClockEdge (x)
Write #1, "SerialChannel" & str(x), SerialChannel (x)
Write #1, "AlignValue" & str(x), AlignValue (x)
Write #1, "AlignEdge" & str(x), AlignEdge (x)
Write #1, "AlignChannel" & str(x), AlignChannel (x)
Write #1, "UseAlignChannel" & str(x), UseAlignChannel (x)
Write #1, "ClockChannel" & str(x), ClockChannel (x)
Write #1, "BitsPerValue" & str(x), BitsPerValue (x)
Write #1, "msbfirst" & str(x), msbfirst(x)
Write #1, "DPlusSignal" & str(x), DPlusSignal (x)
Write #1, "DMinusSignal" & str(x), DMinusSignal (x)
Write #1, "USBSpeed" & str(x), USBSpeed (x)
Write #1, "USBAddr" & str(x), USBAddr (x)
Write #1, "USBEndpoint" & str(x), USBEndpoint (x)
Write #1, "SOF" & str(x), SOF(x)
Write #1, "SDASignal" & str(x), SDASignal (x)
Write #1, "SCLSignal"™ & str(x), SCLSignal (x)
Write #1, "ShowAck" & str(x), ShowAck(x)
Write #1, "SSsignal" & str(x), SSsignal (x)
Write #1, "SCKsignal" & str(x), SCKsignal (x)
Write #1, "MOSISignal" & str(x), MOSISignal (x)
Write #1, "MISOSignal" & str(x), MISOSignal (x)

USBee DX Test Pod User’s Manual 111

Write #1, "MISOEdge" & str(x), MISOEdge (x)

Write #1, "MOSIEdge" & str(x), MOSIEdge (x)

Write #1, "SSOn" & str(x), SSOn(x)

Write #1, "CanSignal" & str(x), CanSignal (x)

Write #1, "BitRate" & str(x), BitRate (x)

Write #1, "MinID" & str(x), MinID(x)

Write #1, "MaxID" & str(x), MaxID(x)

Write #1, "OneWireSignal" & str(x), OneWireSignal (x)

Write #1, "I2SWordSelectSignal"™ & str(x), I2SWordSelectSignal (x)

Write #1, "I2SClkSignal"™ & str(x), I2SClkSignal (x)

Write #1, "I2SDataSignal" & str(x), I2SDataSignal (x)

Write #1, "ClkSignal"™ & str(x), ClkSignal (x)

Write #1, "DataSignal" & str(x), DataSignal (x)

Write #1, "AsyncSignal" & str(x), AsyncSignal (x)

Write #1, "BaudRate" & str(x), BaudRate (x)

Write #1, "DataBits" & str(x), DataBits(x)

Write #1, "Parity" & str(x), Parity(x)

Write #1, "ASCII" & str(x), ASCII(x)

Write #1, "PS2DataSignal" & str(x), PS2DataSignal (x)

Write #1, "PS2ClockSignal" & str(x), PS2ClockSignal (x)
Next x

Write #1, "TCenterSample", TCenterSample

Write #1, "Infinite", Infinite

Write #1, "TimelineMode", TimelineMode

Write #1, "OffsetValue", OffsetValue

Write #1, "OffsetValue", OffsetValue

Write #1, "TimePerDiv", TimePerDiv

Write #1, "MaxNumberOfSamples", MaxNumberOfSamples
Write #1, "ActualNumberOfSamples", ActualNumberOfSamples
Write #1, "TimeFlag", TimeFlag

Write #1, "Rate", Rate

Write #1, "MaxRate", MaxRate

Write #1, "Captured", Captured

Write #1, "TRIGValidSetting", TRIGValidSetting
Write #1, "CLKEdgeSetting", CLKEdgeSetting
Write #1, "TriggerOffset", TriggerOffset

Write #1, "KnobValue2", KnobValue2

Write #1, "NumberOfSections", NumberOfSections
Write #1, "ScopeVoltsPerDiv", ScopeVoltsPerDiv
Write #1, "TCenterSample", TCenterSample

Write #1, "ScreenMax", ScreenMax

Write #1, "ScreenMin", ScreenMin

Write #1, "Initialized", Initialized

Write #1, "NumberOfSamples", NumberOfSamples

For x = 0 To 255

Write #1, "TBuffer" & str(x), TBuffer (x)
Next x
For x = 0 To 15

For y = 0 To 3

Write #1, "TriggerSetting" & str(x) & "-" & str(y), TriggerSetting(y, x)
Write #1, "Trigg" & str(x) & "-" & str(y), Trigg(y, x)
Next y

Next x

Write #1, "TriggerStates"™, TriggerStates

Write #1, "ScaleP", ScaleP

Write #1, "TOCursor", TOCursor

Write #1, "TCurrentCursor", TCurrentCursor

Write #1, "TXCursor", TXCursor

Write #1, "TYlCursor", TYlCursor

Write #1, "TY2Cursor", TY2Cursor

Write #1, "TScale", TScale

Write #1, "TSubScale", TSubScale

Write #1, "TStartingSample", TStartingSample

Write #1, "TCenterSample", TCenterSample

Write #1, "CalibrationSlope", CalibrationSlope
Write #1, "ScopelGroundCalibrationLevel", ScopelGroundCalibrationLevel
Write #1, "ScopelDisplayCenterVolts", ScopelDisplayCenterVolts
Write #1, "ScopelTriggerLevel", ScopelTriggerLevel
Write #1, "ScopelTriggerSlope", ScopelTriggerSlope
Write #1, "VoltsPerPixel", VoltsPerPixel

Write #1, "NumberOfDiv", NumberOfDiv

Write #1, "AnalogWaveIndex", AnalogWaveIndex

Write #1, "DigitalHighOn", DigitalHighOn

Write #1, "DigitalLowOn", DigitalLowOn

Write #1, "AnalogHighOn", AnalogHighOn

Write #1, "AnalogLowOn", AnalogLowOn

112 USBee DX Test Pod User’s Manual

For x = 0 To 16
Write #1, "SigColor" & str(x), SigColor (x)
Write #1, "SigBackColor" & str(x), SigBackColor (x)
Write #1, "SigForeColor" & str(x), SigForeColor (x)
Next x

Write #1, "AnalogColor", AnalogColor
Write #1, "XCursorsOn", XCursorsOn
Write #1, "YCursorsOn", YCursorsOn

For x = 0 To 15
For y = 0 To 15
Write #1, "SignalsInWave" & str(x) & "-" & str(y), SignalsInWave (y, Xx)
Next y
Next x

Write #1, "GlobalCalValue", GlobalCalValue

For x = 0 To 15
Write #1, "Signallabel"™ & str(x), Forml.SignalLabel (x).Caption
Next x

Write #1, "AOD8", Forml.AOD8.Checked

Write #1, "AOD16", Forml.AO0D16.Checked

Write #1, "A1DO", Forml.AlDO.Checked

Write #1, "A1D8", Forml.AlD8.Checked

Write #1, "AlD16", Forml.AlD16.Checked

Write #1, "A2DO", Forml.A2D0.Checked

Write #1, "A2D8", Forml.A2D8.Checked

Write #1, "A2D16", Forml.A2D16.Checked

Write #1, "CH1V", Forml.CH1V.Value

Write #1, "CH2V", Forml.CH2V.Value

Write #1, "ChlOffset", Forml.ChlOffset.Value

Write #1, "Ch20ffset", Forml.Ch20ffset.Value

Write #1, "VScrolll", Forml.VScrolll.Value

Write #1, "HScrolll", Forml.HScrolll.Value

Write #1, "SizelList", Forml.SizeList.ListIndex

Write #1, "RateList", Forml.RateList.ListIndex

Write #1, "NormalMode", Forml.NormalMode.Value

Write #1, "AutoMode", Forml.AutoMode.Value

Write #1, "TriggerPositionScroll", Forml.TriggerPositionScroll.Value
Write #1, "Persist", Forml.Persist.Value

Write #1, "Vectors", Forml.Vectors.Value

Write #1, "Wide", Forml.Wide.Value

Write #1, "ScaleP", Forml.ScaleP.Text

Write #1, "SubScale", Forml.SubScale.Text

Write #1, "AnnotationAnalog", Forml.AnnotationAnalog.Text
Write #1, "AnnotationDHigh", Forml.AnnotationDHigh.Text
Write #1, "AnnotationDLow", Forml.AnnotationDLow.Text
Write #1, "ShowAnn", Forml.ShowAnn.Checked

Write #1, "AnWhite", Forml.AnWhite.Checked

Write #1, "AnBlack", Forml.AnBlack.Checked

Write #1, "CH1lUnits", CHlUnits

Write #1, "CH2Units", CH2Units

Write #1, "CHlFrame", Forml.CHlFrame.Caption

Write #1, "Frame3", Forml.Frame3.Caption

Write #1, "CHlScaleSlope", CHlScaleSlope

Write #1, "CHlScaleOffset"™, CHlScaleOffset

Write #1, "CH2ScaleSlope", CH2ScaleSlope

Write #1, "CH2ScaleOffset", CH2ScaleOffset

For x = 0 To 100
Write #1, "MarkerWave" & str(x), MarkerWave (x)
Write #1, "MarkerPosition" & str(x), MarkerPosition (x)
Write #1, "MarkerText" & str(x), MarkerText (x)
Write #1, "MarkerDirection" & str(x), MarkerDirection (x)
Write #1, "MarkerOn" & str(x), MarkerOn (x)

Next x

Write #1, "CHlName", Forml.CHlFrame.Caption
Write #1, "Frame3", Forml.Frame3.Caption
Write #1, "ShowGrid", Forml.Grid.Checked

For x = 0 To 15
Write #1, "ProtocolOn" & str(x), ProtocolOn (x)
Write #1, "ProtocolFile" & str(x), ProtocolFile (x)
Next x

' The binary sample data follows this last record
Write #1, "[Samples]"

USBee DX Test Pod User’s Manual 113

After the “[Samples]” tag is the raw sample data. There are NumberOfSamples times 4 bytes in the
data. Each sample is 4 bytes taken at the sample rate. The low 16 bits are the logic levels of each of
the 16 digital channels. The high 2 bytes are the 8-bit ADC values for each of the two analog
channels.

EXPORT TO TEXT FORMAT

You can also export a specific portion of the sample data by placing the X1 and X2 cursors. When you
choose File | Export to Text the samples between the X1 and X2 cursors will be written to a file in
comma delimited text format as below.

The format of the text output file is a header that specifies Digital0-F, CH1, and CH2 titles. The
following lines are the actual values of the 16 digital lines in hex format, and the CH1 and CH2 voltage
level in volts.

DigitalO-F, CH1, CH2
OxFFOF, -0.16, 3.67
OxFFOF, -0.08, 3.75

CALIBRATION

Since electronic components vary values slightly over time and temperature, the USBee DX Pod
requires calibration periodically to maintain accuracy. The USBee DX has been calibrated during
manufacturing and should maintain accuracy for a long time, but in case you want to recalibrate the
device, follow these steps. The calibration values are stored inside the USBee DX pod. Without
calibration the measurements of the oscilloscope may not be accurate as the pod ages.

To calibrate your USBee DX Pod you will need the following equipment:

. External Voltage Source (between 5V and 9V)
. High Precision Multimeter

When you are ready to calibrate the USBee DX Pod, go to the menu item Setup | Calibrate. You will
be asked to confirm that you really want to do the calibration. If so, press Yes, otherwise press No.
Then follow these steps:

. Connect the CH1 and CH2 signals to the GND signal using the test leads and press OK. A
measurement will be taken.

. Connect the GND signal to the ground and the CH1 and CH2 signals to the positive
connection of the External Voltage Source (9V) using the test leads.

. With the Multimeter, measure the actual voltage between the GND signal and the CH1
signal and enter this value in the dialog box and press OK. A measurement will be taken.

. The calibration is now complete. The calibration values have been saved inside the pod.

The analog measurements of your USBee DX pod are only as accurate as the voltages supplied and
measured during calibration.

114 USBee DX Test Pod User’s Manual

DIGITAL SIGNAL GENERATOR

This section details the operation of the Digital Signal Generator application that comes with the
USBee DX. Below you see the application screen.

~3US5Bee DX Digital Signal Generator B i [[
File Edit Waveform Setup Help

SMEEIE) Econel | X[M[A| BB =]k =] =

§.24ms 2WIms 62.18ms 00.51ms 131.07ms 162.53ms 192.00ms 325.44ms 266 8ms:

Signal 4

Signal C

[cursors ® |

Pod Humber Display Contrel [~ Generation Control
[[Gereate | [ThilonSampies =] &t [abisos =]
2| 00ns
USBee DX | 2| D fgie | N i Bl -
i) Szl @ ZeomOut | | 2eem Al | oo & Defachangeon -~ Data changs on
0 e Y r— CLK Rising edge CLK Faling edge
FRelative To: File Contral
{ Pint Tl Open ‘

The Digital Signal Generator is used to actively drive the 16 digital signals with a voltage pattern that
you define.

When using this application, the USBee DX signals O through F are actively driven. Do not connect
these signals to your circuit if your circuit is also driving the signals or you will damage the USBee or

your circuit or both.

To define the pattern that you want to generate, you will use the waveform screen and draw the
timing of pulses that you require.

USBee DX Test Pod User’s Manual 115

DIGITAL SIGNAL GENERATOR SPECIFICATIONS

Digital Output Channels
Maximum Digital Sample Rate [1]
Internal Clocking

External Clocking

Number of Samples [2]
Sample Rates [1]

Sample Clock Output

Channel Output Drive Current
Output Low Level

Output High Level

Looping

External Trigger Signal

QUICK START

16 or 8
24 Msps for 8 channels, 12Msps for 16 channels

Yes
No

1 million samples up to PC RAM
1Msps to 24 Msps

Yes

4mA

<0.8v

>2.4V

Yes

Yes

In order to quickly get up and running using this application, here is a step by step list of the things

you need to do to generate a set of digital waveforms.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small

socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.

You can either use the socket to plug onto a header post, or connect it to one of the mini-

grabber clips and then attach it to the Ground.
. Connect any of the Signal 0 thru F pins on the USBee DX pod to one of the signal wires
using the small socket on the end of the wire.

. Connect the other end of the wire to your circuit you would like to actively drive.

. Run the Signal Generator Application.

. Draw a waveform you want to generate using the waveform edit controls at the top of the

waveform window.

. Press the Generate button. This will generate the waveform you have drawn on the pod

signals.

116

USBee DX Test Pod User’s Manual

FEATURES

POD STATUS

The Signal Generator display shows a list with the available Pod ID List for all of the USBee DX’s that
are connected to your PC. You can choose which one you want to use. The others will be unaffected.
If a USBee DX is not connected, the list box will read Demo to indicate that there is no pod attached.

If you run the software with no pod attached, it will run in demonstration mode so that you can still
see how the software functions.

CHANNEL SETUP

The Signal Generator operates in either an 8-channel or 16-channel mode. Select which mode you
want to use by clicking the menu item Setup, 8 (or 16) Channels. Below you see the 8 Channel mode.

~3USBee DX Digital Signal Generator B

= =1olx|
File Edit Waveform Setup Help
= ediconol A | MLF| @& =|k| =] o
26 38ms 26.48ms. 26.61ms 26.74ms. 26.88ms. 2T0ims 27 14ms. 27 2Tms 27 4ims.
= = i il = =
[R e T I TR T, W N B o |
[cursors |
Pod Mumber Display Contral Contral
1234 - [1 | Gererats | [Mlilion Sampies =] st [amispe]
USBee DX Zoomin | < | > ; gg:;:z Start generating data when ll I Loon
. X Ermreya | | pe—— the extemal signal TRG is:
Digital Signal T[0.0ns & Dalachengeon ~ Data change on
Timeline Lo 0[T0ns CLK Rising edge CLK Faling edge
Help T|%|0
Relative To: Filer Ce
|V Print Save Az Open ‘

The maximum sample rate that your system can achieve varies depending on the number of channels
you select.

For 8 Channel mode, the maximum sample rate is 24M samples per second.

For 16 Channel mode, the maximum sample rate is 12M samples per second.

GENERATION CONTROL

The Signal Generator lets you draw the behavior of digital signals and then generates them as a
“trace” on the pod signals. The Generation Control section of the display lets you choose how the
traces are generated. Below is the Generation Control section of the display.

USBee DX Test Pod User’s Manual 117

Generation Contral

Generate |1M|H\on5amples =] =t |4Msps =

Start generating data when
! the estemal signal TREG is: E| 1 Lo
& Datachangson . Datachangs on

CLK Rising edge CLK Faling adge

File Coniral
{ Fiint | Saveds | Open | ‘

The Generate button starts and stops a data output. When the signal generator is first started, the
Generate button is not pressed and is waiting for you to draw a waveform. The Generate button
outputs a single trace and stops, unless you check the Loop box. If the Loop checkbox is checked, the
wave is played until the end and then restarted at the beginning sample without breaks in between
the first and second trace.

The Buffer Size lets you select the size of the Sample Buffer that is used. For each trace, the buffer is
completely played back. No partial buffers can be generated. You can choose buffers that will hold
the information that you want to output, but remember that the larger the buffer, the longer it will
take to generate.

You can also choose the Sample Rate that you want samples to be aligned to. This uses an internal
clock at that sample rate you choose. You can choose from 1 Msps (samples per second) to up to 24
Msps. The actual maximum sample rate depends on your PC configuration. If the sample rate is too
high for your system, you will see a dialog box appear when you generate the waveform that informs
you that the rate is too high. You must lower the sample rate and try again.

While the pod is generating the waveform on the pod signals, the CLK line is an output and toggles
once for each of the samples provided. You can specify the CLK Edge that the output data changes on
using the two radio buttons above.

The TRG signal can be used as an External Trigger for the pattern generation. Select the state of the
TRG signal you want to start the output on by pressing the toggle pushbutton above.

The Status Box on the display will show red when the unit is not outputting samples, flash blue when

it is waiting for a trigger, and glow green when the trigger condition has been met. It will glow red
again when the generation is completed.

118 USBee DX Test Pod User’s Manual

WAVEFORM EDIT, DISPLAY AND ZOOM SETTINGS

The Waveform display area is where the signal information is shown. It is displayed with time
increasing from left to right and voltage increasing from bottom to top. The screen is divided into
Divisions to help in measuring the waveforms.

~3USBee DX Digital Signal Generator =] 3
File Edit Waveform Setup Help

=EIE cacoa F| 2| IR BB =] =

1.31ms a.18ms 17.04ms 24.8ms 32.77ms A5Ims a8.5ms 6.36ms 6e.23ms

Signal 4

|cursors ® |

Pod Humber Display C: C
124 - | Goreiais | [1Milion Samples <] &t [16Msps |

2| 0.0ns
USBee DX Zoomin | < | > Starl gereraling datawhen g
0] 0.0ns ™ Loop
Digital Signal Generator | ZoomOut | ZoomAll | 7775 bng the external signal TG &
q q & Datachangeon ~ Datachange on

Timeline %o 0[00ns CLK Rising edae CLK Falling edae
Hely
|V Frint Save Az Open ‘

To Scroll the Waveforms in Time left and right, you can use the left and right arrows highlighted
above, click and drag the Overview Bar (right under the Display Control title), or you can simply click
and drag the waveform itself.

To change the zoom ratio for the time, click the Zoom In or Zoom Out buttons. You can also zoom in
and out in time by clicking on the waveform. To zoom in, click the left mouse on the waveform
window. To zoom out in time, click the right mouse button on the waveform window.

The cursor in the waveform window can be in one of two modes: Pan and Zoom, or Select. In pan
and zoom, you can click and drag the waveform around on the screen. In Select, you click and drag to
select a portion of the waveform to edit. Change modes by clicking the left-right arrow (pan and
zoom), or the standard arrow (select).

Editing the Waveform is done by selecting the portion of the waveform by clicking and dragging to
highlight a section, and then pressing one of the Edit Control buttons at the top. You can set the
specified samples to a high level, low level, create a clock on that signal, create a single pulse, or copy
and paste. You can also Undo the last change if needed.

USBee DX Test Pod User’s Manual 119

ESETTING WAVEFORM SECTIONS

To create a waveform you need to scroll or zoom to the section of wave you want to change. Then
change the cursor to an arrow by pressing the arrow button at the top.

-3USBee DX Digital Signal Generator

File Edit Waveform Setup Help

I [l |
MELEE econel | 2| MA| W@ =]k =] o
26.36ms 26.48ms. 26.61ms 26.74ms. 26.88ms 27.01ms 27.14ms. 27.27ms 27.41ms
UL UL LI LU TLILTL LT (LI Lr
[S 1y) g SR I A—— | R —
[cursors |
Fod Number Display C [=
1234 = [T | [P [THilon Samples =] &t [4Msps =]
Zoonin | < | > | 2 st
generating data when
LslEEm ﬁ| i B R 2] e
Digital Signal 1100ns (& Dalachengeon ~ Data change on
e Tmeine o WeO[@EE CLK Rising edge CLK Faling edge
FRelative To: File Contral
{ Print Save b3 Open ‘

Then select a section of a wave by using the left mouse button with a click and drag. Once the
selection is highlighted you can press the High or Low button to set that section to the desired level.

| CREATING CLOCKS

To create a clock on a given signal you first select the wave you want to set. Then click the Clock
button at the top of the waveforms to get the following dialog box.

4! Create A Clock

=[0] %|
Clock Frequency Clock Period———————
1+ Frequency i+ Hz
= Period = kHz
E2 MHz
I Ireert Clock

Create Clock

Cloze |

Select the period or the frequency that you would like and press Create Clock. Your selected channel
will then be replaced by a clock with that frequency.

120

USBee DX Test Pod User’s Manual

CREATING PULSES

To create a series of pulses with known duration on a given signal you first select the wave you want
to set. Then click the Pulses button at the top of the waveforms to get the following dialog box.

e

Pl el Pulse Duration

©us
© ms

Create Pulss Close

Set the duration time and voltage level and press Create Pulse. You can then create consecutive
pulses just by entering the new duration and pressing the button again.

MEASUREMENTS AND CURSORS

To help you create time accurate waveforms, the cursors can be used to get exact timing.

~3USBee DX Digital Signal Generator P[] o3 |
File Edit Waveform Setup Help
D =E Facais F|| LA EEFEEE
13.38ms 12.56ms 1379ms 14.0ms 1421ms 144ms 1484ms 1485ms 15.08m
L L 1
[cursors x o |
Fod Number Display Ci C
123 - I | Gererats | [3hllion Sampies =] &t [abispe =]
2| 13.91ms
USBee DX Zoomin | < | > Start generating data when
. e || [O[1445ms the extemal signal TRG is: Z| 1 Loop
Digital Signal Generatar T[00ns & Datachangecn ~ Daiachange on
D Tweke o Rio 0[Sz CLK Rising edge CLK Faling edge
e 1 B File Contral
{ Frint Save fis Open ‘

The X and O Cursors are placed on any horizontal sample time. This lets you measure the time at a
specific location or the time between the two cursors. To place the X and O cursors, move the mouse
to the white box just below the waveform. When you move the mouse in this window, you will see a
temporary line that indicates where the cursors will be placed. Place the X cursor by left clicking the
mouse at the current location. Place the O cursor by right clicking the mouse at the current location.

In the Measurement window, you will see the various measurements made off of these cursors. To
change the selected relative cursor, click the T,X or O buttons next to the “Timeline Relative To” text.

USBee DX Test Pod User’s Manual 121

. X Position — time at the X1 cursor relative to the selected cursor
. O Position — time at the X2 cursor relative to the selected cursor
. Xto O - difference between X and O cursors

FILE SAVE AND OPEN

Using the File menu functions, you can save and open a current set of configuration and trace sample
data.

Choose the menu item File | Save As to save the current configuration and sample data to a binary
ULC file.

To load a previously saved waveform and display it, choose File | Open and specify the filename to
load. This waveform will then be displayed as it was saved. If the loaded file is smaller than the
current buffer size, the file will be loaded at the beginning of the current buffer. The ending samples
in the buffer remain unchanged. If you load a file with more samples than the current buffer, the
loaded samples will be truncated.

PRINTING

You can print the current screen to any printer by choosing the File | Print menu item.

122 USBee DX Test Pod User’s Manual

DIGITAL VOLTMETER (DVM)

This section details the operation of the Digital Voltmeter (DVM) application that comes with the
USBee DX. Below you see the application screen.

~3jUSBee DX D¥YM x|

File Help

CH1|0.14 volits
CHZ |568 vois

Pod Status

1234 'I

USBee OK

DIGITAL VOLTMETER SPECIFICATIONS

Analog Channels Displayed 2
Analog Input Voltage Range -10V to +10V

Minimum Measurable Resolution 78mV

Analog Resolution 256 steps
Update Rate 3 samples per second
QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to measure two analog voltages.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.

You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the CH1 pin on the USBee DX pod to one of the signal wires using the small socket
on the end of the wire. Connect the other end of the wire to your circuit you would like to
test.

. Connect the CH2 pin on the USBee DX pod to one of the signal wires using the small socket
on the end of the wire. Connect the other end of the wire to your circuit you would like to
test.

. Run the DVM Application.

. The voltages of the CH1 and CH2 signal will be displayed and updated about three times
per second.

USBee DX Test Pod User’s Manual 123

FEATURES

POD STATUS

The DVM display shows a current USBee DX Pod Status by a red or green LED. When a USBee DX is
connected to the computer, the Green LED shows and the list box shows the available Pod ID List for
all of the USBee DX'’s that are connected. You can choose which one you want to use. The others will
be unaffected. If a USBee DX is not connected, the LED will glow red and indicate that there is no pod
attached.

If you run the software with no pod attached, it will run in demonstration mode and simulate data so
that you can still see how the software functions.

VOLTAGE MEASUREMENT

The DVM takes a 250 msec measurement of each of the channels and displays the average voltage
over that time period. Although the resolution of each individual sample is 78.125mV, the averaged
values are far more accurate.

124 USBee DX Test Pod User’s Manual

DATA LOGGER

This section details the operation of the Data Logger application that comes with the USBee DX.
Below you see the application screen.

~3Pod 1234 - USBee Data Logger B x|
File Datalogging Help

USBee DX
Data Logger

Bit Label Now

No Log File Loaded

Sample Interval [5 =1
in seconds =

Start Logging

DATA LOGGER SPECIFICATIONS

Digital Channels Logged 16

Analog Channels Logged 2

Sample Rates 500ms to 300sec
QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to log analog and digital data.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the CH1 and/or CH2 pins on the USBee DX pod to one of the signal wires you
would like to test.

. Connect the digital Signal 0 thru F pins on the USBee DX pod to one of the signal wires you
would like to test.

. Run the Data Logger Application.

. Select the sample time and press the Start Logging button. Select the filename for the
logged data to be exported to and press OK.

USBee DX Test Pod User’s Manual 125

126

This will start the logging process. Data will be displayed as it is logged. When you are

finished, press the Stop Logging button.

The data is then displayed in the list format for review. You can also post process the text

based log file using other programs.

Pod 321 - USBee Data Logger

Flle Datalogging Help

USBee DX
Data Logger

Bit

Now

signal C 1

007
015

Wlts.
Valts

Sample Interval [5 =1
in seconds =

Center Sample#:0000 Value:

65535=FFHFF 4:32:51 PM

Z Cursor Sample#:0000 Value:

65535=FFHFF 4:32:51 P

0 Cursor Sample#:0000 Value:

65535=FFHFF 4:32:51 FM

z-0 Samples:0000 Value:

000 Time: Osec

| Sample FEDCE RO B 7

[oxoo00
0001
0002
0003
0004
ooos
[sLIT
o007
ooos
ooo0s
0010
0011
oo1z
0013
0014
0015
0016
0017
oo1s
0019
0020
0021
0022
0023

e T
HFOOKrHEORHEOREEOOROORORORDR
L T TR T T T T T
e T T T TN T T T T T
e N T Tl Ty T P T
T T T P

6543210 HEX

1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FFFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07
1111111 FFFF 0.07
1111111 FIFF 0.07
1111111 FIFF 0.07
1111111 FFFF 0.07

B R R B B B B B B B B B B B B B R R R R

e R S = =R A e e e

USBee DX Test Pod User’s Manual

FREQUENCY COUNTER

This section details the operation of the Frequency Counter application that comes with the USBee
DX. Below you see the application screen.

i
Ele Sestup Help
USBee DX Frequency
Counter
0.00 Hz
0.00 Hz
0.00 Hz
0.00 Hz
0.00 Hz
Signal 5 0.00 Hz
Signal b 0.00 Hz
Signal 7 A z
Signal 8 A z
z
.00 Hz
0.00 Hz
0.00 Hz
0.00 Hz
195.066.93 Hz
0.00 Hz
Start Logging Data | Measures DC to 3.0MHz

FREQUENCY COUNTER SPECIFICATIONS

Digital Channels Measured 8orl6
Analog Channels Measured 0

X 12MHz (8-channel) or 6MHz (16-
Maximum Measured Frequency [1]

channel)

Maximum Digital Input Voltage +5.5V
Resolution 1Hz
Gate Time 1sec

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to measure the frequency of a digital signal.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the Signal 0 thru F signals on the USBee DX pod to your circuit you would like to
test.

. Run the Frequency Counter Application.

. The frequency of each of the 16 signal lines will then be displayed.

. You can log the frequency data to a file by pressing the “Start Logging Data” button.

USBee DX Test Pod User’s Manual 127

CHANNEL SETUP

The Frequency Counter can operate on either 8 channels or 16 channels at a time. For 8 channels,
the maximum frequency measured is 12MHz. For 16 channels, the maximum frequency measured is
6MHz.

Change setup modes by clicking the menu item Setup and selecting the desired number of channels.
Below shows the 8 channel setup mode.

il
File Setup Help
USBee DX Frequency
Counter
Signal 0 0.00 Hz
195,082.66 Hz
0.00 Hz
0.00 Hz
0.00 Hz
Signal & 0.00 Hz
Signal & 0.00 Hz
Signal 7 0.00 Hz
Signal 8 not used
Signal 9 not used
Signal A not used
not used
not used
Signal D not used
Signal E not used
Signal F not used
:StatLopging Datas| [Measures DC to 6.0MHz

128 USBee DX Test Pod User’s Manual

REMOTE CONTROLLER

This section details the operation of the Remote Controller application that comes with the USBee
DX. The Remote Controller application is a simple way to control the output settings for all of the 16
digital lines on the USBee DX. Since this application drives the digital signals, you will see a warning
message alerting you to this fact before the lines are driven.

USBee Remote Controller Warning! x|

WARNING: The USEse DX Remaoke Contraller actively drives Pod signals 0 through F. Make sure that these pod kest leads are either unconnected ar
connected ko signals that are not also driving, Connecting these signals ta ather active signals can cause damage ta your circuit under test as well as
the USBes test pod, CWAY is not liable for such damage.

Click OK to enter the application. Below you see the application screen.

~3Pod 1234 - USBee DX Remote Conkre

File Help

USBee DX
Remote Controller

Label Now
-- Togale Output
-- Toggle Output
-- Toggle Output
-- Togale Output
-- Toggle Output
-- Toggle Output
-- Togale Output
-- Toggle Output
-- Toggle Output
-- Togale Output
-- Toggle Dutput
-- Togale Output
-- Togale Output

To change the digital output, simply press the Toggle Output button to change the output from a 1 to
0 or visa versa.

REMOTE CONTROLLER SPECIFICATIONS

Digital Channels Controlled 16

Analog Channels Controlled 0

Control Mechanism Toggle Button per channel
Channel Output Drive Current 4mA

Output Low Level < 0.8V

Output High Level > 2.4V

USBee DX Test Pod User’s Manual

129

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to control the output of each of the digital signal lines.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the Signal 0 thru F lines on the USBee DX pod to your circuit you would like to
actively drive.

. Run the Remote Controller Application.

. Press any of the Toggle buttons and the level of the output will toggle (Low to High, High
to Low)..

130 USBee DX Test Pod User’s Manual

PWM CONTROLLER

This section details the operation of the Pulse Width Modulator application that comes with the
USBee DX. The Pulse Width Modulator application creates a Pulse Width Modulated output for all of
the 16 digital lines on the USBee DX. Since this application drives the digital signals, you will see a
warning message alerting you to this fact before the lines are driven.

USBee PWM Controller Warning! x|

WARNING: The USEse PWM Controller actively drives Pod signals O thraugh F. Make sure that these pod test lsads are either unconnected or
connected ko signals that are not also driving, Connecting these signals ta ather active signals can cause damage to your circuit under test as well as
the USBes test pod, CWAY is not liable for such damage.

Click OK to enter the application. Below you see the application screen.

i
File Help
USBee DX
PWM Controller
it Walue
(0=, 255=3.3]
12 4 ’
[ETRE] 1
a5 D 3
285 Al id
signal 4 32 A i
132 Al |
EERE 3
RN I
128 1 | L4
] 4 J »
=k jIC
19 4] D
® 4 iLa
1| A i
FERAR i
37 A 3

Each channel outputs a repeating waveform with a 1kHz frequency. The period of the repeating
waveform is made up of a high duration followed by a low duration and has 256 steps. The length of
the High duration is the PWM value that is shown. The length of the Low duration is 256 — the High
duration.

You can create a simple analog output voltage by using a series resistor and a capacitor to ground on
each channel.

USBee DX Test Pod User’s Manual 131

~3UsBee D% Dscilloscope and Logic Analyzer

File Yiew Setup Help

=10l

z|z(= r 1 T]
z|z|z 1 L L L L
HEE
HEE
| Signaid =|=|=|=
Signal5) 2|z [z |a
EAE R
HEBE
Seconds/Division [Cursors x1 Xz T ok |
2.50ms 208ms 1 5ams \oims seeds aasaus 4;moss onams idms
E — —
JE3 I 2]
Pod Status | | Acquisition Control Trigger play
Tiigger Fositen ®eRl_ vl [0
,—_[Enm(~] || € Homal I~ Persist ®1_[1.84ms |
EE || P || =<2 Ao || & veewss | | 2 S
UsesOK | | single | [ips =] | @ lpped (= Hika I TR Man [0237
] Clear Min | -0.087
CH1

The above shows 2 outputs of the PWM Controller. Signal 1 shows the PWM value set to 31 (out of
255) and Signal 0 shows the PWM value of 137. A value of O is all low, and a value of 255 is mostly
high (one out of 256 is low).

PWM CONTROLLER SPECIFICATIONS

Digital Channels Controlled

Analog Channels Controlled

Resolution

PWM Frequency

Control Mechanism

Channel Output Drive Current

Output Low Level

Output High Level

QUICK START

16

0

256 steps
1.02kHz

Slider Switch

4mA

<0.8V

> 2.4V

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to create 16 PWM signals.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-

grabber clips and then attach it to the Ground.

. Connect the Signal 0 thru F lines on the USBee DX pod to your circuit you would like to
actively drive with a PWM signal.

. Run the PWM Controller Application.

. Use the scroll bars to set the desired PWM level, with 0 being all low and 255 being all
high outputs.

132

USBee DX Test Pod User’s Manual

FREQUENCY GENERATOR

This section details the operation of the Frequency Generator application that comes with the USBee
DX. The Frequency Generator is used to generate a set of commonly used digital frequencies on the
low 8 digital channels.

Below you see the application screen.

~jUSBee DX Frequency Generator x|

Signal 0 46.875kHz
Signal 1 23.4375kHz
Signal 2 11.71875kHz
Signal 3 5.859375kHz
Signal 4 93.76kHz

Signal 6 375kHz
Signal 7 T50kHz

The USBee Pod is now generating these frequencies

To set the frequencies generated, use the drop down list box to choose which subset you would like
to generate. Then refer to the screen for which signal is generating which frequency.

FREQUENCY GENERATOR SPECIFICATIONS

Digital Channels Controlled 8

Analog Channels Controlled 0

Sets of Frequencies 6

Set1 1MHz, 500kHz, 250kHz,
62.5kHz,31.25kHz, 15.625kHz,
7.8125kHz

32kHz, 16kHz, 8kHz, 4kHz, 2kHz,
1kHz, 500Hz, 250Hz

Set 3 750kHz, 375kHz, 187.5kHz,
93.75kHz, 46.875kHz, 23.4375kHz,
11.1875kHz, 5.5893kHz
19.2kHz, 9600Hz, 4800Hz, 2400Hz,

Set 2

Set4
1200Hz, 600Hz, 300Hz, 150Hz
Set5 64Hz, 32Hz, 16Hz, 8Hz, 4Hz, 2Hz,
1Hz, 0.5Hz
e 1920Hz, 960Hz, 480Hz, 240Hz,
e
120Hz, 60Hz, 30Hz, 15Hz
Channel Output Drive Current 4mA
Output Low Level < 0.8V
Output High Level > 2.4V

USBee DX Test Pod User’s Manual 133

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things

you need to do to generate one of the fixed sets of frequencies on the digital lines.

134

Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

Connect the Signal 0 thru 7 lines on the USBee DX pod to your circuit you would like to
actively drive.

Run the Frequency Generator Application.

From the dropdown list, select the set of frequencies that you want to generate out the
pod.

These frequencies are now being generated on the pod digital signals.

USBee DX Test Pod User’s Manual

12C CONTROLLER

This section details the operation of the 12C Controller application that comes with the USBee DX.
The 12C Controller lets you control (be the 12C Master) an 12C device using the SDA and SCL lines of
the device.

The Below you see the application screen.

~3UsBee DX I2C Controller 10| x|
Filz Help

Build your 12C sciipt here using the View the I2C sciipt processing here
bultars on the left

Fress here 1o Fun Sarpt |

- that you built to the right

r~Start and Stop

Start Stop

~Byle Sent to Slaves
Slave AdchinHex [ag

Slave Slave
Address + | Address +
Read Wiite

Data

- Byte Riead From Slaves——

Data Dala
[ACK) | [NoACK)

Dutput flename - Contains the
read data and ACK. status after
the seript runs

CAIZC0utpt

USBee DX Setup for 12C

Signal 0 - SCL (12C clock)
Signal 1 - SDA (12C data)
GND - ground on pour
circut

Your circuit must pull bath lines
up ta 3.3¥ or 5V using & pullp
resistor

The To control a device you must first create an 12C text script in the script window. You can either
type in the window as you would a text editor or you can use the buttons on the left to quickly insert
the correct tokens for the various parts of an 12C transaction.

The valid tokens are as follows:

<START> To generate a Start condition
<STOP> To generate a Stop conditon
<Slave Address Read: A0> <ACK=?> To generate a Read Command

<Slave Address Write: AO> <ACK=?> To generate a Write Command

<Data to Slave: 00> <ACK=?> To send a byte to the slave
<Data from Slave: ??> <ACK> To read a byte from the slave
<Data from Slave: ??> <No ACK> To read a byte from the slave

With no ACK following the byte

USBee DX Test Pod User’s Manual 135

[2C CONTROLLER SPECIFICATIONS

12C Clock Speed 2.2 KHz average
12C Control Method Text Script
X Start, Stop, Ack, Nak, Read, Write,
12C Script Tokens
Data
Script Edit Functions Cut, Copy, Paste, Save, Open, New

Text File (includes read data and Ack
12C Output Format

state)
Channel Output Drive Current 4mA
Output Low Level < 0.8V
Output High Level Open Collector (requires external

pull-up resistor)

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to generate 12C transactions.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the Signal 0 pin on the USBee DX pod to your circuit SDA line.

. Connect the Signal 1 pin on the USBee DX pod to your circuit SCL line.

. Run the I12C Controller Application.

. Press the buttons to create a script of the 12C transaction you want to run.

. Press the Run Script button to generate the 12C transaction.

. The transaction result is written to the output window (and text file) including and read
data and ACK states..

136 USBee DX Test Pod User’s Manual

PULSE COUNTER

This section details the operation of the Pulse Counter application that comes with the USBee DX.
The Pulse Counter is used to count the number of cycles or edges that are detected on up to 16 of the
digital lines.

Below you see the application screen.

=3Pod 321 - USBee DX Pulse Counter

olo|lols|os|els|elele

1853105

& Display Pulse Count
"~ Display Edge Court

Stop Pulse Counting

Counts DC to 166.7ns pulses

To start counting the pulses or edges on the signals press the Start Puls Counting button. The pulses
are counted and the current range of pulses is displayed. In this case the system is counting all pulses
down to 166.7nsec wide.

You can use any of the 15 lines as a gate to enable the counting during specified times. For example,

you can count pulses only when Signal 0 is high by setting the Signal 0 Gate to High. Pulses that occur
when Signal 0 is low are not counted

PULSE COUNTER SPECIFICATIONS

Digital Channels Measured 16
Analog Channels Measured 0
Minimum Pulse Width [1] 83.3nS

Pulse Count Control Clear, Start and Stop

Display Mode Pulse or Edge Count
External Gate Signals up to 15
Gate Conditions High or Low

USBee DX Test Pod User’s Manual

137

QUICK START

In order to quickly get up and running using this application, here is a step by step list of the things
you need to do to count the number of edges or pulses of a digital signal.

. Connect the GND pin on the USBee DX pod to one of the signal wires using the small
socket on the end of the wire.

. Connect the other end of the wire to the Ground of your circuit you would like to test.
You can either use the socket to plug onto a header post, or connect it to one of the mini-
grabber clips and then attach it to the Ground.

. Connect the Signal 0 thru F signals on the USBee DX pod to your circuit you would like to
test.

. Run the Pulse Counter Application.

. Press the Start Counting button.

. The number of pulses one each of the 8 digital signals is displayed.

. You can use any of the 15 lines as a gate to enable the counting during specified times.
For example, you can count pulses only when Signal 0 is high by setting the Signal 0 Gate
to High. Pulses that occur when Signal 0 is low are not counted.

138 USBee DX Test Pod User’s Manual

USBEE TOOLBUILDER

OVERVIEW

The USBee DX Test Pod System consists of the USBee DX Test Pod connected to a Windows® 2000, XP
or Vista PC High Speed USB 2.0 port through the USB cable, and to your circuit using the multicolored
test leads and clips. Once connected and installed, the USBee can then be controlled using either the

USBee DX Windows Software or your own USBee DX Toolbuilder software.

The USBee DX system is also expandable by simply adding more USBee DX pods for more channels
and combined features.

The USBee DX Test Pod is ideal for students or designers that need to get up and running with High
Speed USB immediately. With a mini-B USB connector on one end and signal pin headers on the
other, this simple pod will instantly USB 2.0 High-Speed enable your design. Then using the source
code libraries, drivers and DLL's that are included here you can write your own PC application to
control and monitor the signal pins on the pod.

The USBee DX has headers that are the interface to your circuits. The signals on these headers
represent a 16 bit data bus, a Read/Write#/TRG signal (T) and a clock line (C). Using the libraries and
source code provided you can do reads and writes to these signals. The USBee DX acts as the master,
driving the T and C signals to your circuit.

There are six modes of data transfers that you can use depending on your system needs.

. Voltmeter Mode

. Signal Capture

. Digital Signal Generator

. Bi-Directional “bit-bang” mode

. Uni-Directional High Speed mode

VOLTMETER MODE

The simplest of the analog functions is the DVM (Digital Voltmeter) routine called GetAllSignals. It
simply samples all of the signals on the USBee DX pod and measures the voltage on both analog
channels. This measurement is taken over a second an the average is returned.

The routine GetAllSignals () samples the specified channel and returns the measurement.

SIGNAL CAPTURE

The USBee DX has the ability to capture samples from the 16 digital signals and two analog channels
at the same time. Each analog sample is time synchronized with the corresponding digital samples.

USBee DX Test Pod User’s Manual 139

In signal capture modes, there is a single capture buffer where each sample is a long value made up
of 4 bytes. The low order 2 bytes represent the 16 digital channels. Digital Signal 0 is bit O of each
long value. The Analog samples are the high two bytes where each byte is an 8-bit ADC value taken
during that sample period for that channel. The samples range from 0 (at -10.0V) to 255 (at +10.0V).
Each count of the ADC equates to 78.125mV, which is the lowest resolution possible on the USBee DX
without averaging.

The maximum sample rate that is possible in Signal Capture mode is 24Msps. This value can depend
on your PC system and available processing speed and how many byte lanes are sampling data. The
basic rule of thumb is that the maximum bandwidth through USB 2.0 is near 24Mbytes/second.
Therefore to capture 2 bytelanes (16 digital channels for example) would equate to a maximum
sample rate of 12Msps.

The method for performing a single data capture, or sampling, using the Signal Capture routines is as
follows:

. Allocate the sample buffers (MakeBuffer())

. Start the capture running (StartCapture(...))

. Monitor the capture in progress to determine if it is triggered, filling, or completed.
(CaptureStatus()).

. End the capture when it is finished. (StopCapture())

. Process the sample data that is now contained in the sample buffers.

. Once the data is captured into a buffer, you can call the Bus Decoder routines to extract
the data from these busses.

140 USBee DX Test Pod User’s Manual

DIGITAL SIGNAL GENERATOR

The USBee DX has the ability to generate (output) samples from 8 or 16 digital signals at up to
24Msps or 12Msps in Signal Generator mode.

In this mode, there is a single buffer that stores the samples to generate. Each sample is a long value
made up of 4 bytes. The low order 2 bytes represent the 16 digital channels. Digital Signal 0 is bit 0
of each long value. The high two bytes are not used. These samples can then be generated on
command.

The maximum sample rate that is possible Signal Generator mode is 24Msps. This value can depend
on your PC system and available processing speed and how many byte lanes are generating data. The
basic rule of thumb is that the maximum bandwidth through USB 2.0 is near 24Mbytes/second.
Therefore to generate 2 bytelanes (16 digital channels for example) would equate to a maximum
sample rate of 12Msps.

The method for generating a single output pattern using the Signal Generator routines is as follows:

. Allocate the sample buffer (MakeBuffer())

. Fill the sample buffer with the pattern data you want to generate.

. Start the generation running (StartGenerate (...))

. Monitor the generation in progress to determine if it is triggered, filling, or completed.
(GenerateStatus()).

. Terminate the generation. (StopGenerate())

The USBee DX can not generate analog output voltages using this mode. Variable analog outputs are
possible using the PWM Controller and an external RC circuit.

BI-DIRECTIONAL AND UNI-DIRECTIONAL MODES

These two modes allow bit-level data transfers to and from the USBee DX pod. The first offers
complete flexibility of the 8 digital signal lines, while the other gives you very high transfer rates.

In the Bi-Directional Mode, each of the 16 data signals can be independently setup as inputs or
outputs. When sending data to the pod, only the lines that are specified as outputs will be driven.
When reading data from the pod, all 16 signals lines will return the actual value on the signal
(whether it is an input or an output)

In the High-Speed Mode, all of the 16 data signal lines are setup in the same direction (as inputs or
outputs) at the same time. When sending data to the pod, all signals become outputs. When reading

data from the pod, all signals become inputs.

Also in High Speed mode, you can specify the CLK rate. Available CLK rates are 24MHz, 12MHz,
6MHz, 3MHz, and 1MHz. For slower rates you can use the bi-directional mode

In each of the modes you can specify the polarity of the CLK line. You can set the CLK line to change
data on the falling edge and sample on the rising edge, or visa versa.

USBee DX Test Pod User’s Manual 141

The routines used to read and write the data to the pod are the same for both modes. You call the
SetMode function to specify the mode you want to use. All subsequent calls for data transfers will

then use that mode of transfer.

The following table shows the possible transfer rates for the various modes. This assumes that your

USB 2.0 host controller can achieve these rates. USB 2.0 Host controllers can vary greatly.

Mode

Bi-Directional

Bi-Directional

High-Speed

High-Speed

Transfer Type

Write-SetSignals

Read-GetSignals

Write-SetSignals

Read-GetSignals

Burst Rate

300k Bytes/sec

175k Bytes/sec

24M Bytes/sec

16M Bytes/sec

Average Rate

~300k Bytes/sec

~175k Bytes/sec

~20M Bytes/sec

~13M Bytes/sec

SYSTEM SOFTWARE ARCHITECTURE

The USBee DX Pod is controlled through a set of Windows DLL function calls. These function calls are
defined in following sections and provide initialization and data transfer routines. This DLL can be
called using a variety of languages, including C. We have included a sample application in C that show
how you can use the calls to setup and control the pod. You can port this example to any language
that can call DLL functions (Delphi, Visual Basic, ...)

After installing the software on your computer, you can then plug in the USBee DX pod. Immediately
after plugging in the pod, the operating system finds the USBEEDX.INF file in the \Windows\INF
directory. This file specifies which driver to load for that device, which is the USBEEDX.SYS file in the
\Windows\System32\Driver directory. This driver then remains resident in memory until you unplug
the device.

Once you run your USBee Toolbuilder application, it will call the functions in the USBEEDX.DLL file in

the \Windows\System32 directory. This DLL will then make the correct calls to the USBEEDX.SYS
driver to perform the USB transfers that are required by the pod.

142 USBee DX Test Pod User’s Manual

THE USBEE DX POD HARDWARE

The USBee DX has two sets of header pins that can be connected to a standard 0.025” square
socketed wire. One section of pins is for the digital interface and the other is for the analog channels.
Below is the pinout for these two interfaces.

Digital 20 pin Header Pinout: (0-5V Max input levels)

. Pin0 Data In/Out Bit 0

. Pin 1 Data In/Out Bit 1

. Pin 2 Data In/Out Bit 2

. Pin 3 Data In/Out Bit 3

. Pin 4 Data In/Out Bit 4

. Pin 5 Data In/Out Bit 5

. Pin 6 Data In/Out Bit 6
. Pin 7 Data In/Out Bit 7

. Pin 8 Data In/Out Bit 8

. Pin9 Data In/Out Bit 9

. Pin A Data In/Out Bit 10
. Pin B Data In/Out Bit 11
. Pin C Data In/Out Bit 12
. Pin D Data In/Out Bit 13
. Pin E Data In/Out Bit 14
. Pin F Data In/Out Bit 15
. PinT Read/Write# Output (bit-bang mode), TRG (Signal Generator Mode)

(R/W#/TRG)
. Pin C Clock Output (CLK)

. PinG (x2) Ground

Analog 4 pin Header Pinout: (-10V to +10V Max input levels)

. Pin 1 Analog Channel 1 Input
. Pin 2 Analog Channel 2 Input
. Pin G (x2) Ground

Each of the calls to the USBee DX interface libraries operate on a sample buffer. For each sample that
is sent out the signal pins or read into the signal pins, the R/W#/TRG (T) line is set and the CLK line (C)
toggles to indicate the occurrence of a new sample. Each of the bits in the sample transferred maps
to the corresponding signal on the DX pod. For example, if you send out a byte 0x80 to the pod, first
the Read/Write# line (T) will be driven low, then the signal on Pin 7 will go high and the others (pin O-
6 and pin 8 - F) will go low. Once the data is on the pins, the Clock line (C) is toggled to indicate that
the new data is present.

USBee DX Test Pod User’s Manual 143

INSTALLING THE USBEE DX TOOLBUILDER

Do not plug in the USBee DX pod until after you install the software.

The USBee DX Toolbuilder software is included as part of the installation with the USBee DX
Installation CD and can be downloaded from www.usbee.com. Run the setup.exe install program in
the downloaded file to install from the web. The install program will install the following USBee
Toolbuilder files and drivers into their correct location on your system. Other files will also be
installed, but are not necessary for Toolbuilder operation.

USBEE DX TOOLBUILDER PROJECT CONTENTS

Contents of the USBee DX Toolbuilder Visual C Program
(contained in the \Program Files\USBee DX\USBeeDXToolbuilder\HostInC directory after the install).

USBeeDX.dsp Visual C Project File
USBeeDX.dsw Visual C Workspace File
USBeeDX.cpp Visual C program

UsbDXla.lib USBee DX Interface library file

The USBee DX Toolbuilder also depends on the following files for proper operation. These files will be
installed in the following directories prior to plugging in the USBee DX pod to USB.

. USBDXLA.DLL in the Windows/System32 directory
. USBEEDX.INF in the Windows/INF directory
. USBEEDX.SYS in the Windows/System32/Drivers directory

Once the above files are in the directories, plugging in the USBee DX pod into a high speed USB port
will show a “New Hardware Found” message and the drivers will be loaded.

144 USBee DX Test Pod User’s Manual

USBEE DX TOOLBUILDER FUNCTIONS

This section details the functions that are available in the usbdxla.dll and defines the parameters to
each call.

INITIALIZING THE USBEE DX POD

ENUMERATEDXPODS

This routine finds all of the USBee DX pods that are attached to your computer and returns an array
of the Pod IDs.

Calling Convention

int EnumerateDxPods (unsigned int *PodID);
where PodID is a pointer to the list of Pod IDs found.
Return Value:

Number of USBee DX Pods found

INITIALIZEDXPOD

This routine initializes the Pod number PodNumber. This routine must be called before calling any
other USBee DX functions.

Calling Convention

int InitializeDXPod (unsigned int PodNumber) ;

where PodNumber is the Pod ID of the pod used found on the back of the unit.
Return Value:

0 = Pod Not Found

1 =Pod Initialized

USBee DX Test Pod User’s Manual 145

BIT BANG-MODES

' SETMODE

This routine sets the operating mode for the Pod number PodNumber. This routine must be called

before calling the SetSignals or GetSignals functions.

Calling Convention

int SetMode (int Mode) ;

. Mode is the type of transfers that you will be doing and includes a number of bit fields.

. Bit 0 — High Speed or Bi-Directional mode

. Bit 0 = 0 specifies independent Bi-Directional transfer mode. In this mode, each of the 16

data signals can be independently setup as inputs or outputs. When sending data to the

pod, only the lines that are specified as outputs will be driven. When reading data from

the pod, all 16 signals lines will return the actual value on the signal (whether it is an input

or an output).

. Bit 0 = 1 specifies high speed all-input or all-output transfer mode. In this mode, all of the

16 data signal lines are setup in the same direction (as inputs or outputs). When sending

data to the pod, all signals become outputs. When reading data from the pod, all signals

become inputs.

. Bit 1 — CLK mode

. Bit 1 = O specifies that data changes on the Rising edge and data is sampled on the Falling

edge of CLK.

. Bit 1 = 1 specifies that data changes on the Falling edge and data is sampled on the Rising

edge of CLK.

. Bits 4,3,2 — High Speed CLK rate (don’t care in bi-directional mode)

. Bits 4,3,2=0,0,0
o Bits 4,3,2=0,0,1
. Bits 4,3,2=0,1,0
. Bits 4,3,2=0,1,1
. Bits 4,3,2=1,0,0

Return Value:

. 0 =Pod Not Found
. 1 = Pod Initialized

146

CLK=24MHz
CLK=12MHz
CLK=6MHz
CLK=3MHz
CLK=1MHz

USBee DX Test Pod User’s Manual

;SETSIGNALS - SETTING THE USBEE DX OUTPUT SIGNALS

Calling Convention

int SetSignals (unsigned long State,
unsigned int length,
unsigned long *Samples)

. State is not used for High-Speed Mode. In Bi-Directional mode, State is the Input/Output
state of each of the 16 USBee signals (0 through F). A signal is an Input if the
corresponding bit is a 0. A signal is an Output if the corresponding bit is a 1.

. length is the number of bytes in the array Samples() that will be shifted out the USBee
pod. The maximum length is 16383.

. Samples() is the array that holds the series of samples that represent the levels driven on
the output signals. When set as an output, a signal is driven high (3.3V) if the
corresponding bitis a 1. A signal is driven low (0V) if the corresponding bit is a 0. In Bi-
Directional mode, if a signal is set to be an Input in the State parameter, the associated
signal is not driven. The Read/Write#/TRG (T) line is set low prior to data available, and
the CLK line (C) toggles for each output sample (Length times).

Return Value:

. 1 = Successful
. 0 = Failure

EGETSIGNALS - READING THE USBEE DX INPUT SIGNALS

Calling Convention

int GetSignals (unsigned long State,
unsigned int length,
unsigned long *Samples)

. State is not used for High-Speed Mode. In Bi-Directional mode, State is the Input/Output
state of each of the 16 USBee digital signals (0 through F). A signal is an Input if the
corresponding bit is a 0. A signal is an Output if the corresponding bit is a 1.

. length is the number of bytes in the array Samples() that will be read from the USBee pod.
The maximum length is 16383.

. Samples() is the array that will hold the series of samples that represent the levels read on
the input signals. The Read/Write# (T) line is set high prior to data available, and the CLK
line (C) toggles for each input byte (Length times).

. Return Value is the digital level of all 16 USBee pod Signals (bit O is signal 0, bit 15 is signal
F)

USBee DX Test Pod User’s Manual 147

LOGIC ANALYZER AND OSCILLOSCOPE FUNCTIONS

The following API describes the routines that control the Logic Analyzer and Oscilloscope functionality
of the USBee DX Test Pod.

- MAKEBUFFER
This routine creates the sample buffer that will be used to store the acquired samples.
Calling Convention
unsigned long *MakeBuffer (unsigned long Size)
where Size is the number of samples to allocate. Each sample is contained in a long (4 byte) value
with the low two bytes being the 16 digital lines and the high two bytes being two 8-bit ADC values
for each of the two analog channels.
Return Value:

0 = Failed to allocate the buffer

other = pointer to allocated buffer

 DELETEBUFFER
This routine releases the sample buffer that was used to store the acquired samples.
Calling Convention
unsigned int *DeleteBuffer(unsigned long *buffer)
where buf fer is the pointer to the allocated buffer.
Return Value:
0 = Failed to deallocate the buffer

other = Success

148 USBee DX Test Pod User’s Manual

' STARTCAPTURE
This routine starts the pod capturing data at the specified trigger and sample rates.

Calling Convention

int StartCapture (unsigned int Channels, unsigned int Slope,
unsigned int AnalogChannel, unsigned int Level,

unsigned int SampleRate, unsigned int ClockMode, unsigned long
*Triggers, signed int TriggerNumber, unsigned long *buffer,
unsigned long length, unsigned long poststore);

. Channels represent which samples to take:
o Bit 0: 1 = Sample Digital 0-7 signals
o Bit 1: 1 = Sample Digital 8-F signals
o Bit 2: 1 = Sample Analog Channel 1
o Bit 3: 1 = Sample Analog Channel 2
. Slope is as follows:
o 0=Analog Slope for Trigger is Don’t Care. Uses Digital Triggers instead.
o 1 = Analog Slope for Trigger is Rising Edge. Ignores digital triggers.
o 2 = Analog Slope for Trigger is Falling Edge. Ignores digital triggers.
. AnalogChannel specifies which analog channel to use for triggering
o 1=_Channel 1
o 2 = Channel 2
. Level: if Slope is not 0, this value specifies the analog trigger level. This value is in ADC
counts, which go from 0 at -10V to 255 at +10V (78.125mV per count).
. SampleRate is as follows:
o 247 = 24Msps
167 = 16 Msps
127 =12 Msps
87 =8 Msps
67 =6 Msps
47 = 4 Msps
37 =3 Msps
27 =2 Msps
o 17=1Msps
. ClockMode: Always O - reserved

O 0O 0O O O O O

. Triggers: array of Mask/Value sample pairs used for triggering on the digital samples.
Mask is a bit mask that indicates which bit signals to observe. 1 in a bit position means to
observe that signal, 0 means to ignore it. Value is the actual value of the bits to compare
against. If a bit is not used in the Mask, make sure that the corresponding bitisa 0 in
Value. These triggers are only in effect if the Slope is 0.

. TriggerNumber: the number of pairs of Mask/Value in the above Triggers Array.

. buffer: pointer to the sample buffer to store the acquired data into. This buffer must be
created using the MakeBuffer routine. Each sample is contained in a long (4 byte) value

USBee DX Test Pod User’s Manual 149

with the low two bytes being the 16 digital lines and the high two bytes being two 8-bit

ADC values for each of the two analog channels.

. Length: The total number of samples to acquire. This value must be a multiple of 65536.

. Poststore: The total number of bytes to store after the trigger event happens. If the
trigger happens early, the samples are stored until the buffer is full.

Return Value:

. 0 = Failed
. 1 = Success

CAPTURESTATUS

This routine checks the status of the data capture in progress.

Calling Convention

int CaptureStatus (
char
char
long
long
long
char

char *breaks,
*running,
*triggered,
*start,
*end,
*trigger,
*full

. Break: The number of breaks that have occurred in the data sampling since the start of
the acquisition. This value is zero (0) if the acquisition has been continuous. If the value is
1 or greater, there was a break in the capture for some reason. If breaks occur repeatedly,
your PC is not capable of the sample rate you’ve chosen and a lower sample rate is needed
to achieve continuous sampling.

. Running: 1 = Acquisition is still running, 0 = Acquisition has completed

. Triggered: 1 = Trigger has occurred, 0 = still waiting for the trigger

. Start: Sample Number of the start of the buffer. 0 unless there is an error.
. End: The sample number of the last sample.

. Trigger: The sample number at the point of trigger.

. Full: The percentage of the buffer that is currently filled. Ranges from 0 to 100.

Return Value:

Number of breaks in the sampling

150

USBee DX Test Pod User’s Manual

. STOPCAPTURE
This routine terminates a pending capture.
Calling Convention

int StopCapture (void)

Return Value:

. 1 = Capture Stopped
. 0 = Stop Failed

LOGGEDDATA

This routine returns the 4 byte value of a particular sample. The low 2 bytes contain the 16 digital
channels. The high two bytes contain two 8-bit ADC values for the two analog channels.

Calling Convention

long LoggedData (unsigned long index)
Index: sample number to return

Return Value:

Value of the given sample

 DECODEUSB

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeUSB (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long
NumberOfSamples, long ShowEndpoint, long ShowAddress, long DPlus,
long DMinus, long Speed, long Rate, long SOF, long delimiter, long
showall, long hex, char *ProtocolDefinitionFilename, char
*ProtocolOutputFilename, char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital

USBee DX Test Pod User’s Manual 151

lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.
OutFilename: pointer to the filename string to write the decoded data to.
StartSample: the index of the first sample to start decoding
EndSample: the index of the last sample to decode
NumberOfSamples: The total Sample Buffer Size
ShowEndpoint: 999 = show all traffic, otherwise show only this USB endpoint number
traffic
ShowAddress: 999 = show all USB devices, otherwise only show the USB device with this
USB address
DPlus: Which signal (0 — 15) to use for the D Plus signal
DMinus: Which signal (0 — 15) to use for the D Minus signal
Speed: 0 = Low Speed USB, 1 = Full Speed USB
Rate is the rate at which samples were taken during StartCapture:
o 247 = 24Msps (must use this for Full Speed USB)

o 167 = 16 Msps
o 127 =12 Msps
o 87 =8 Msps
o 67 =6 Msps
o 47 =4 Msps
o 37 =3 Msps
o 27 =2 Msps

o 17 =1 Msps
SOF: 0 = do not show the SOF (Start of Frames), 1 = show SOFs
Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter
Showall: 0 = Only show the data payload, 1 = show all packet details
Hex: 0 = display data in decimal, 1 = display data in hex
ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is O then the PacketPresenter feature is turned off.
ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.
ErrorString — string that holds an error description of the routine returns an error.

Return Value:

152

TRUE — No Error during processing
FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

USBee DX Test Pod User’s Manual

DECODESPI

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeSPI (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate, unsigned
long SS, unsigned long SCK, unsigned long MOSI, unsigned long MISO,
unsigned long MISOEdge, unsigned long MOSIEdge, unsigned long
delimiter, unsigned long hex, unsigned long UseSS, long
BytesPerLine, char *ProtocolDefinitionFilename, char
*ProtocolOutputFilename, char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

o 167 = 16 Msps
o 127 =12 Msps
o 87 =8 Msps
o 67 =6 Msps
o 47 = 4 Msps
o 37 =3 Msps
o 27 =2 Msps

o 17 =1 Msps
. SS: Which signal (0 — 15) to use for the Slave Select signal
. SCK: Which signal (0 — 15) to use for the clock signal
. MISO: Which signal (0 — 15) to use for the MISO signal
. MOSI: Which signal (0 — 15) to use for the MOSI signal
. MOSIEdge: 0 = use falling edge of SCK to sample data on MOSI, 1 = use rising edge
. MISOEdge: O = use falling edge of SCK to sample data on MISO, 1 = use rising edge
. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter
. Showall: 0 = Only show the data payload, 1 = show all packet details
. Hex: 0 = display data in decimal, 1 = display data in hex
. UseSS: 0 = don’t use an SS signal, 1 = use the SS signal
. BytesPerLine: How many output words are on each output line.
. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is 0 then the PacketPresenter feature is turned off.
. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.
. ErrorString — string that holds an error description of the routine returns an error.

USBee DX Test Pod User’s Manual 153

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

 DECODEI2C

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeI2C (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate, unsigned
long SDA, unsigned long SCL, long showack, long delimiter, long
showall, long hex, char *ProtocolDefinitionFilename, char
*ProtocolOutputFilename, char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

167 = 16 Msps

127 =12 Msps

87 =8 Msps

67 =6 Msps

47 = 4 Msps

37 =3 Msps

27 =2 Msps

o 17=1Msps

. SDA: Which signal (0 — 15) to use for the SDA signal

. SCL: Which signal (0 — 15) to use for the SCL signal

. ShowAck: 0 = Do not show each byte ACK values, 1 = show the ACK value after each byte

O O 0O O O O ©

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

. Showall: 0 = Only show the data payload, 1 = show all packet details

. Hex: 0 = display data in decimal, 1 = display data in hex

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is 0 then the PacketPresenter feature is turned off.

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.

. ErrorString — string that holds an error description of the routine returns an error.

154 USBee DX Test Pod User’s Manual

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

 DECODECAN

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeCAN (unsigned long * SampleBuffer, unsigned char
*QutFilename, long StartSample, long EndSample, unsigned long Rate,
unsigned long Channel, unsigned long BitRate, unsigned long maxID,
unsigned long minID, long delimiter, long showall, long hex,

char *ProtocolDefinitionFilename, char *ProtocolOutputFilename,
char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

167 = 16 Msps

127 =12 Msps

87 =8 Msps

67 =6 Msps

47 =4 Msps

37 =3 Msps

27 =2 Msps

o 17 =1 Msps

. Channel: Which signal (0 — 15) to use for the CAN signal

. BitRate: The value of the bit rate in bits per second (for 250kbps use 250000)

. MaxID: 0 = show all packets, otherwise this is the maximum ID to display

O 0 O 0O 0O O O

. MinID: 0 = show all packets, otherwise this is the minimum ID to display

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

. Showall: 0 = Only show the data payload, 1 = show all packet details

. Hex: 0 = display data in decimal, 1 = display data in hex

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is O then the PacketPresenter feature is turned off.

USBee DX Test Pod User’s Manual 155

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.
. ErrorString — string that holds an error description of the routine returns an error.

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

 DECODE1WIRE

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

CWAV_EXPORT int CWAV_API DecodelWire (unsigned long *SampleBuffer,
unsigned char *OutFilename, long StartSample, long EndSample, long
Rate, unsigned long Signal, long delimiter, long showall, long hex,
char *ProtocolDefinitionFilename, char *ProtocolOutputFilename,
char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

167 = 16 Msps

127 =12 Msps

87 =8 Msps

67 =6 Msps

47 = 4 Msps

37 =3 Msps

27 =2 Msps

17 = 1 Msps

. Signal: Which signal (0 — 15) to use for the 1-Wire signal

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

O 0O 0O 0O 0O 0O O O

. Showall: 0 = Only show the data payload, 1 = show all packet details

. Hex: 0 = display data in decimal, 1 = display data in hex

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is O then the PacketPresenter feature is turned off.

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.

156 USBee DX Test Pod User’s Manual

. ErrorString — string that holds an error description of the routine returns an error.

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

DECODEPARALLEL

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeParallel (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate, unsigned
long Channels, unsigned long Clock, unsigned long UseCLK, long
CLKEdge, unsigned long delimiter, unsigned long hex, long
BytesPerLine, char *ProtocolDefinitionFilename, char
*ProtocolOutputFilename, char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

o 167 = 16 Msps
o 127 =12 Msps
o 87 =8 Msps
o 67 =6 Msps
o 47 = 4 Msps
o 37 =3 Msps
o 27 =2 Msps

o 17 =1 Msps

. Channels: Bit mask which represents which signals are part of the parallel data bus. Bit 0 is
Pod signal 0. Bit 15 is pod signal F.

. Clock: Which signal (0 — 15) to use for the clock signal

. UseCLK: 0 — don’t use the Clock signal above, 1 — use the Clock signal above to qualify the
samples

. CLKEdge: 0 = use falling edge of the Clock to sample data, 1 = use rising edge

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

. Showall: 0 = Only show the data payload, 1 = show all packet details

USBee DX Test Pod User’s Manual 157

. Hex: 0 = display data in decimal, 1 = display data in hex

. BytesPerLine: How many output words are on each output line.

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is 0 then the PacketPresenter feature is turned off.

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.

. ErrorString — string that holds an error description of the routine returns an error.

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

 DECODESERIAL

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeSerial (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, unsigned long Rate,
unsigned long Channel, unsigned long AlignValue, unsigned long
AlignEdge, unsigned long AlignChannel, unsigned long
UseAlignChannel, unsigned long ClockChannel, unsigned long
ClockEdge, unsigned long BitsPerValue, unsigned long MSBFirst,
unsigned long delimiter, unsigned long hex, long BytesPerLine,

char *ProtocolDefinitionFilename, char *ProtocolOutputFilename,
char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

. NumberOfSamples: The total Sample Buffer Size

. Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)

167 = 16 Msps

127 =12 Msps

87 =8 Msps

67 =6 Msps

47 =4 Msps

37 =3 Msps

27 =2 Msps

17 = 1 Msps

O 0O 0O O 0O 0O O O

158 USBee DX Test Pod User’s Manual

. Channel: Which signal (0 — 15) to use for the serial signal

. AlignValue: When using word aligning, bus value which is used for aligning the serial
stream to byte boundaries.

. AlignEdge: When using an external signal for aligning, 0 = falling edge, 1 = rising edge.

. AlignChannel: When using an external signal for aligning, which signal (0 — 15) to use for
the align signal

. UseAlignChannel: 0 = use word aligning, 1 = use external align signal

. ClockChannel: Which signal (0 — 15) to use for the clock signal

. CLKEdge: 0 = use falling edge of the Clock to sample data, 1 = use rising edge

. BitsPerValue: how many bits are in each word of the serial stream

. MSBFirst: 0 = LSBit is sent first, 1 = MSBit is sent first

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

. Showall: 0 = Only show the data payload, 1 = show all packet details

. Hex: 0 = display data in decimal, 1 = display data in hex

. BytesPerLine: How many output words are on each output line.

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is 0 then the PacketPresenter feature is turned off.

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.

. ErrorString — string that holds an error description of the routine returns an error.

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

 DECODEASYNC

This routine decodes bus traffic and outputs the data to an output file. This routine works on a
sample buffer captured using the StartCapture routine.

Calling Convention

int DecodeASYNC (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate, unsigned
long Channels, unsigned long BaudRate, unsigned long Parity,
unsigned long DataBits, unsigned long delimiter, unsigned long hex,
unsigned long ascii, long BytesPerLine,

char *ProtocolDefinitionFilename, char *ProtocolOutputFilename,
char *ErrorString)

. SampleBuffer: pointer to the sample buffer that contains the acquired sample data. Each
sample is contained in a long (4 byte) value with the low two bytes being the 16 digital
lines and the high two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

. OutFilename: pointer to the filename string to write the decoded data to.

. StartSample: the index of the first sample to start decoding

. EndSample: the index of the last sample to decode

USBee DX Test Pod User’s Manual 159

. NumberOfSamples: The total Sample Buffer Size
. Rate is the rate at which samples were taken during StartCapture:
o 247 = 24Msps (must use this for Full Speed USB)

o 167 = 16 Msps
¢} 127 =12 Msps
o 87 =8 Msps
¢} 67 = 6 Msps
o 47 =4 Msps
o 37 =3 Msps
o 27 =2 Msps

o 17 =1 Msps

. Channels: Bit mask which represents which signals to decode. Bit 0 is Pod signal 0. Bit 15
is pod signal F.

. BaudRate: Baud Rate in bits per second (19.2K = 19200)

. Parity: 0 = No parity, 1 = Mark, 2 = Space, 3 = Even, 4 =0dd, 5 = Ignore

. DataBits: Number of data bits (4 to 24)

. Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space delimeter

. Showall: 0 = Only show the data payload, 1 = show all packet details

. Hex: 0 = display data in decimal, 1 = display data in hex

. ASCII: 0 = show byte values, 1 = show ASCII equivalent

. BytesPerLine: How many output words are on each output line.

. ProtocolDefinitionFilename — filename for the Protocol Definition File to use to create a
PacketPresenter file. If this value is 0 then the PacketPresenter feature is turned off.

. ProtocolOutputFilename — filename that is created for the output of the PacketPresenter.

. ErrorString — string that holds an error description of the routine returns an error.

Return Value:

. TRUE — No Error during processing
. FALSE — Error while processing. The ErrorString contains a description of the error to
present to the user.

DECODESETNAME

This routine sets the string that is output during any of the above decoders and can represent a
unique identifier for that bus.

Calling Convention

int DecodeSetName (char *name);

160 USBee DX Test Pod User’s Manual

DIGITAL SIGNAL GENERATOR FUNCTION

The following API describes the routines that control the Signal Generator functionality of the USBee
DX Test Pod.

 SETDATA

This routine sets the value of a given sample to the value specified. You can also write directly to the
allocated buffer after calling MakeBuffer(). The low 2 bytes contain the 16 digital channels. The high
two bytes contain two 8-bit ADC values for the two analog channels.

Calling Convention

long SetData (unsigned long index,
unsigned long value);

. Index: sample number to change
. Value: 4-byte value to store in that sample

Return Value:

. 0 = Set failed
. 1 = Set successful

 STARTGENERATE

This routine starts the pod generating data with the specified trigger, sample rates, and data.
Calling Convention

int StartGenerate (unsigned long bits,
unsigned int SampleRate,
unsigned char triggermode,
unsigned long *buffer,
unsigned long length);

. Bits is the number of bits to generate
. 8 =the low 8 digital signals (0 thru 7)
. 16 = all digital signals (O thru F)
. SampleRate is as follows:
o 247 = 24MHz
167 = 16MHz
127 = 12MHz
87 = 8MHz
67 = 6MHz

O O O O

USBee DX Test Pod User’s Manual 161

47 = AMHz
37 =3MHz
27 = 2MHz

o 17 = 1MHz
TriggerMode: Indicates the value on the external TRG signal (T) that must occur before
the waveforms are generated. 0 = Don’t Care, 1 = rising edge, 2 = falling edge, 3 = high
level, 4 = low level

O O ©

Buffer: pointer to the sample that holds the data to generate. This buffer must be created
using the MakeBuffer routine.
Length: The total number of samples to generate. This value must be a multiple of 65536.

Return Value:

. 0 = Failed
. 1 = Success
GENERATESTATUS

This routine checks the status of the data generation in progress.

Calling Convention

int GenerateStatus(char *breaks,

char *running,
char *triggered,
char *complete);

Breaks: The number of breaks that have occurred in the data generating since the start of
the generation. This value is zero (0) if the sample timing has been continuous. If the
value is 1 or greater, there was a break in the generation for some reason. If breaks occur
repeatedly, your PC is not capable of the sample rate you’ve chosen and a lower sample
rate is needed to achieve continuous sample timing.

Running: 1 = Generation is still running, 0 = Generation has completed

Triggered: 1 = Trigger has occurred, 0 = still waiting for the trigger

Complete: The percentage of the buffer that has been generated. Ranges from 0 to 100.

Return Value:

162

0 = Status Failed
1 = Status Successful

USBee DX Test Pod User’s Manual

i STOPGENERATE
This routine stops a signal generation in progress and terminates a generation cycle.
Calling Convention

int StopGenerate (void);

Return Value:

. 0 = Stop Failed
. 1 = Stop Successful

DIGITAL VOLTMETER (DVM) FUNCTION

The following API describes the routine that samples both the digital and analog voltages.

GETANALOGAVERAGECOUNT

This routine reads the average analog voltage at the specified channel.
Calling Convention

unsigned long GetAllSignals (
long *chl,
long *ch2,
unsigned long *digital);

*chl and *ch2 will be filled with the analog average voltage for that channel. The value

returned is 100 times the actual value so you need to divide this by 100 to get the measured value in

volts.

*digital will be filled with the digital samples where each bit represents one digital channel. Bit

0 is digital signal 0. Bit 15 is digital signal F.

Return Value: Always 1

USBee DX Test Pod User’s Manual

163

EXAMPLE C CODE

The following code listing is an example in very simple C that calls the DLL functions. Itis a Command

Prompt program that generates the following output when run.

164

Lample USBee DX Toolbuilder app
Getting the PodIDs available

Inltldllglng the Pod

the Mode to fast mode

80.888 bhytes out the pod

86.888 hytes f
the Mode to b

16AAA bytes out the pod
16888 bytes from the pod signals
current state of the pod signals

a.86

on the pod signals
directional mode

Sample USBee DX Logic Analyzers Oscilloscope Toolbuildewr application in €

Start Capturing Data from Pod
Waiting for data to he captured
Sample B FFE!

Hit any key to continue...

SignallF..HA]1 =
1: SignallF..81]1
2: SignallF..081
3: SignallF..H]
4: SignallF..@8]
5: SignallF..H8]
6: SignallF..@8]
?: SignallF..H8]
8: SignallF.._081
z SignallF..81

a: Slgnal[F..B]

11: fignallF

12: Slgnal[F..B]

13: SignallF..

14: SignallF..@]1 = FFEA
USBee DX Signal Generator Application in C
Waiting for generate to finish

gChannell
Rnalogchannell
fnalogChannell
AnalogChannell
fnalogChannell
fnalogChannell
fnalogChannell
fnalogChannell
fnalogChannell
AnalogChannell

fnalogChanneli
AnalogChannell
fnalogChannelli
fAnalogChannell
AnalogChannell =

AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChanne 12
AnalogChannel2
AnalogChannel2
AnalogChannel2
AnalogChannel2
AnalogChannel2

USBee DX Test Pod User’s Manual

File USBeeDX.cpp

//**
// USBee DX Toolbuilder Sample Application

//

// This file contains sample C code that accesses the USBee DX Toolbuilder functions
// that are contained in the USBDXLA.DLL file. These routines are detailed in the
// USBee DX Toolbuilder document which includes the available routines and

// associated parameters.

//

// Copyright 2008, CWAV - All rights reserved.

// www.usbee.com
//**

#include "stdio.h"
#include "conio.h"
#include "windows.h"

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

// DX DLL Routine Declarations

// Basic Bit-Bang I/O Routines

CWAV_IMPORT int CWAV_API SetSignals (unsigned long State, unsigned int length, unsigned

long *Bytes);
// Sets the Digital signals

CWAV_IMPORT int CWAV_API GetSignals (unsigned long State, unsigned int length, unsigned

long *Bytes); // Reads the Digital I/O signals

CWAV_IMPORT int CWAV_API SetMode (int Mode); // Sets the I/O Mode

CWAV_IMPORT unsigned long CWAV_API GetAllSignals(long *chl, long *ch2, unsigned long
*digital);

// SetMode definitions
#define FAST_ONEWAY_ DATA 1
#define SLOW_TWOWAY DATA 0

#define DATA CHANGES_ON_RISING_ EDGE 2
#define DATA_CHANGES_ON_FALLING EDGE 0
#define DATA_IS_SAMPLED ON_RISING_EDGE 0
#define DATA IS_SAMPLED ON_FALLING EDGE 2
#define _24MHz (0 << 2)
#define _12MHz (1 << 2)
#define _6MHz (2 << 2)
#define _3MHz (3 << 2)
#define _1MHz (4 << 2)

// Buffer Routines
CWAV_IMPORT unsigned long * CWAV_API MakeBuffer(unsigned long Size);
// Makes a Logic Analyzer/ OScope or Signal Generator buffer
CWAV_IMPORT int CWAV_API DeleteBuffer(unsigned long *buffer);
// Deletes the associated buffer
CWAV_IMPORT long CWAV_API SetData(unsigned long index, unsigned long value);
// Sets the data in the logic buffer

CWAV_IMPORT int CWAV_API EnumerateDXPods(unsigned int *Pods);
// Find all USBee DX pods attached to this computer
CWAV_IMPORT int CWAV_API InitializeDXPod(unsigned int PodNumber) ;
// Inits the specified Pod. This must be done before operation.

// Logic Analyzer/ Oscilloscope Declarations

#define DIGITAL_HIGH 0x1
#define DIGITAL_ LOW 0x2
#define ANALOG_LOW 0x4
#define ANALOG_HIGH 0x8

CWAV_IMPORT int CWAV_API StartCapture(unsigned int Channels,
unsigned int Slope,
unsigned int AnalogChannel,
unsigned int Level,
unsigned int SampleRate,
unsigned int ClockMode,
unsigned long *Triggers,
signed int TriggerNumber,
unsigned long *buffer,
unsigned long length,
unsigned long poststore);

USBee DX Test Pod User’s Manual

165

CWAV_IMPORT int CWAV_API StopCapture (void); // End a Logic Analyzer trace
CWAV_IMPORT int CWAV_API CaptureStatus(char *breaks, char *running, char *triggered,
long *start, long *end, long *trigger, char *full);

// Signal Generator Declarations

CWAV_TIMPORT int CWAV_API StartGenerate(unsigned long Bits, unsigned int SampleRate,
unsigned char triggermode, unsigned long *buffer, unsigned long length);

CWAV_IMPORT int CWAV_API GenerateStatus(char *breaks, char *running, char *triggered, char
*complete); // Generation Status

CWAV_IMPORT int CWAV_API StopGenerate(void); // Stops the Generation in progress

// StartGenerate External Trigger Settings
#define DONT_CARE_TRIGGER 0

#define RISING_EDGE_TRIGGER 1

#define FALLING_EDGE_TRIGGER 2

#define HIGH_LEVEL_TRIGGER 3

#define LOW_LEVEL TRIGGER 4

#define DONT_CARE_SLOPE 0
#define RISING_EDGE_SLOPE 1
#define FALLING_EDGE_SLOPE 2

// Protocol Decoders

CWAV_IMPORT int CWAV_API DecodeUSB (unsigned long *LoggedData, unsigned char *OutFilename,
long StartSample, long EndSample, long NumberOfSamples,
long ShowEndpoint, long ShowAddress, long DPlus, long DMinus,
long Speed, long Rate, long SOF, long delimiter, long showall,
long hex);

CWAV_IMPORT int CWAV_API DecodeSPI (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long SS,unsigned long SCK,unsigned long tMOSI,unsigned
long tMISO, unsigned long MISOEdge,unsigned long MOSIEdge,
unsigned long delimiter,unsigned long hex,unsigned long UseSS,
long BytesPerlLine) ;

CWAV_IMPORT int CWAV_API DecodeI2C (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long SDA,
unsigned long SCL,
long showack,
long delimiter, long showall,
long hex);

CWAV_IMPORT int CWAV_API DecodeCAN (unsigned long *InputDecodeBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, unsigned long
Rate, unsigned long Channel, unsigned long BitRate,
unsigned long maxID, unsigned long minID,
long delimiter, long showall,
long hex);

CWAV_IMPORT int CWAV_API DecodelWire (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long Signal, long delimiter, long showall,
long hex) ;

CWAV_IMPORT int CWAV_API DecodeParallel (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample,
long Rate, unsigned long Channels,unsigned long Clock,
unsigned long UseCLK, long CLKEdge,
unsigned long delimiter,unsigned long hex, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeSerial (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, unsigned long
Rate, unsigned long Channel,unsigned long AlignValue, unsigned
long AlignEdge,
unsigned long AlignChannel,unsigned long UseAlignChannel,
unsigned long ClockChannel,unsigned long ClockEdge,
unsigned long BitsPerValue, unsigned long MSBFirst,
unsigned long delimiter,unsigned long hex, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeASYNC (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long Channels, unsigned long BaudRate, unsigned long
Parity, unsigned long DataBits, unsigned long delimiter,unsigned
long hex,unsigned long ascii, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeSetName (char *name);

166 USBee DX Test Pod User’s Manual

unsigned char VoltsToCounts(float Volts) // Converts Volts into ADC counts

{

}

float CountsToVolts(unsigned long Counts)

unsigned char counts;
counts = (char) ((Volts + 10.0) / 0.078125);

return (counts) ;

Volts

{

}

double Volts;
Volts = (float) ((double)Counts * 0.078125) - 10.0;

return((float)Volts);

int main(int argc, char* argv[])

{

unsigned long DatalInBuffer[65536], DataOutBuffer[65536];
unsigned int PodNumber, PodID[10], NumberOfPods;

int Returnval;

unsigned long x;

printf ("Sample USBee DX Toolbuilder application in C\n");

[k ok ok e ok Kk o ok Kk ok ok ok Kk ok ok o Kk ok ok o K

// Converts ADC counts into

// Pod Initializations Functions - must call InitializeDXPod before using functions

[KKK o K Kk o K KKK K KKK K K XK K XK K

printf ("Getting the PodIDs available\n");
NumberOfPods = EnumerateDXPods (PodID) ;

if (NumberOfPods == 0) {
printf ("No USBee DX Pods found\n");
getch();
return 0;

}

PodNumber = PodID[0]; // Use the first one we find. Change to address your pod.

printf ("Initializing the Pod\n");
ReturnvVal = InitializeDXPod (PodNumber) ;

if (Returnval != 1) {
printf ("Failure Initializing the Pod\n");
getch();
return 0;

[K Kk K ko K Kk K Kk KK Kk K K KKk K

// Basic I/O Functions
//***********************************

// Make some data to send out the pod signals
for (x=0;x<65536;x++) DataOutBuffer[x]= (char)x;

printf ("Setting the Mode to fast mode\n");

ReturnVal = SetMode (FAST_ONEWAY DATA | DATA_ CHANGES_ON_RISING_EDGE

if (Returnval != 1) {
printf ("Failure setting the mode\n");
getch();

return 0;

}

printf ("Sending 80,000 bytes out the pod\n");
for (x = 0; x < 5; x++)
{
SetSignals (0xFFFF /* Don't Care */, 16000, DataOutBuffer);
}

printf ("Reading 80,000 bytes from the pod signals\n");
for (x = 0; x < 5; x++)
{
GetSignals (0x0000 /* Don't Care */, 16000, DataInBuffer);
}

printf ("Setting the Mode to bi-directional mode\n");

ReturnVal = SetMode (SLOW_TWOWAY DATA | DATA_IS_SAMPLED ON_RISING_EDGE);

USBee DX Test Pod User’s Manual

167

if (Returnval != 1) {
printf ("Failure setting the mode\n");
getch();
return 0;
}
printf ("Sending 16000 bytes out the pod\n");
SetSignals (0xFFFF, 16000, DataOutBuffer);
printf ("Reading 16000 bytes from the pod signals\n");
GetSignals (0x0000, 16000, DataInBuffer);
long chl;
long ch2;
unsigned long digital;
printf ("Getting current state of the pod signals\n");
for (int y = 0; y < 10; y++)
{
GetAllSignals (&chl, &ch2, &digital);

float chlf = (float)chl / (float)100;
float ch2f = (float)ch2 / (float)100;

printf("Chl1:%5.2f Ch2:%5.2f Digital:%04X\n", chlf, ch2f, digital);

[k ok ok e ok Kk ok ok Kk ok ok ok Kk ok ok o Kk ok ok ok K

// Logic Analyzer/ Oscilloscope Functions
//***********************************

printf ("\nSample USBee DX Logic Analyzer/ Oscilloscope Toolbuilder application in
C\n") ;

printf ("Start Capturing Data from Pod\n");

unsigned char Rate = 17; // Sample Rate = 1Msps
unsigned char ClockMode = 2; // Internal Timing

unsigned long Triggers([4];

Triggers[0] = 0; // Trigger Mask = Don't Care
Triggers[1l] = 0; // Trigger Value

char NumberOfTriggers = 1;

long SampleBufferLength = 16 * 65536; // 1Meg Sample Buffer

unsigned long *SampleBuffer = MakeBuffer (SampleBufferLength);

long PostStore = SampleBufferLength;

unsigned char Slope = DONT_CARE_SLOPE;

unsigned char Level = VoltsToCounts(0.5); // Analog Trigger Level in ADC Counts
unsigned char AnalogTriggerChannel = 1; // Chl =1, Ch2 = 2
PostStore = SampleBufferLength;

long Channels = ANALOG_HIGH + ANALOG_LOW + DIGITAL_HIGH + DIGITAL_LOW;
char Breaks;

char Running;

char Triggered;

long Start;

long End;

long Trigger;

char Full;

ReturnvVal = StartCapture (Channels, Slope, AnalogTriggerChannel, Level, Rate,
ClockMode, Triggers, NumberOfTriggers, SampleBuffer, SampleBufferLength, PostStore);

if (Returnval != 1) {
printf ("Failure Starting Capture\n");
getch();

return 0;

}

printf ("Waiting for data to be captured...");

do {
Sleep(500);

// This is required to put pauses between the status requests, otherwise the CaptureStatus
// will eat into the USB bandwidth.

168 USBee DX Test Pod User’s Manual

ReturnVal = CaptureStatus (&Breaks, &Running,
&Full) ;

printf(".");

if (Running && (Breaks != 0)) {

printf ("LA Sample Rate too high\n");
break;
}
} while (Running && (Breaks ==
printf ("\n");

StopCapture () ;

// The data is now available to read
for(x = 0; x < 15; x++)
{
printf ("Sample %d:
%$5.29\n", x,

Signall[F..0] =

& OXFFFF),
CountsToVolts (

(SampleBuffer[x]
(
CountsToVolts ((

[KKK ok K Kk K KK K KKK K KKK K XK K

// Signal Generator Functions
J R

%04X AnalogChannell =

SampleBuffer [x
SampleBuffer [x

&Triggered, &Start, &End, &Trigger,

%$5.2g AnalogChannel2 =

0xFF),

>> 16) &
& OxFF));

>> 24)

printf ("Sample USBee DX Signal Generator Application in C\n");

// Make some data

for (y = 0; y < SampleBufferLength; y++)
SampleBuffer([y] = y & OxFFFF;
ReturnvVal = StartGenerate (16, 17,
SampleBufferLength) ;

printf ("Waiting for generate to finish.");
Running = 1;

while

{

(Running)

GenerateStatus (
Sleep (400) ;

&Breaks, &Running,

printf(".");

if (Breaks) break;

}

printf ("\nBreaks= %d\n", Breaks);
printf ("Running= %d\n", Running);
printf ("Triggered= %d\n", Triggered);
printf ("Complete= %d\n", Full);

printf ("Stopped\n");
StopGenerate () ;

DeleteBuffer (SampleBuffer);

printf ("Hit any key to continue...\n");
getch () ;

return 0;

USBee DX Test Pod User’s Manual

&Triggered,

DONT_CARE_TRIGGER, SampleBuffer,

&Full) ;

169

PERFORMANCE ANALYSIS OF THE “BIT-BANG” ROUTINES

The following logic analyzer capture shows the timing of the execution of the first part of the above
example (The SetSignals and Get Signals section) in FAST ONE-WAY mode. The Clock line (C) is the
strobe for each of the samples transferred and the Data line (DATA) represents the data on each of
the pod digital signal lines. The R/W# (T) indicates if it is a read or a write.

~# USBee DX Oscilloscope and Logic Analyzer
Fie View Setup Help

rM_r_rre T
I NN DN DN D D N e 0

Seconds/Division [Cursors™ @ O |
20ims Z%¥Ems 1.8ms IiEms 1FEms 22%Ems %Ems 30%ms 3EEms
1 - LI | |2
Pod Status | ~ Acquisition Control | Trigger Display | Measurements
Trigger Posttion X2 vi_ [0
0 | | Noml [Persis %1 [G#TE7ns
E R o oo M vacts || TR [T I;EDE,‘AEJZ”S } e
Stopped
USBeeOK | Single | [ormem =] | @ et e T 190 s e (029
*] Clear Min | 0.08v
THT

As you can see, this section takes about 38msec to execute. In this time we perform:

. Initializing the Pod

. Setting the Mode to High Speed mode

. Sending 80,000 samples out the pod using High Speed mode

. Reading 80,000 samples from the pod signals using High-Speed mode

The following trace shows the High-Speed Writes (80,000 samples) followed by Reads (80,000
samples). We first send out 5 blocks of 16,000 samples which take about 19msec. Then we follow
with reads of 5 blocks of 16,000 samples which take about 19msec.

Below is a zoomed in trace showing the timing of each sample during the SetSignal call in Fast Mode.
As you can see the clock is running at 6Msps and the data is changing on the rising edge of the clock.
For Fast Mode writes and reads, each of the blocks of 16,000 bytes is bursted at 6Mbytes/sec (set
using the SetMode parameters). The time between bursts is the time it takes for the PC to queue up
the next USB transfer. This time may vary depending on your processor speed.

170 USBee DX Test Pod User’s Manual

USBee DX Oscilloscope and Logic Analyzer

Fle View Setwp Help
|] I T T T T T]
T = z‘
z|z|z) - - - - -5 - r - r - r
EERE
EERE
EERE
T T|D
EERE
Seconds/Division [Cursors T x x2
Kl G| 3,
Pod Status | - Acquisition Control — - Trigger Display Measurements
Triager Postion ®2xl vi [0
18800 | | | Mol I Persis w1 [Ea167ms
S Fun o oo A 0| | g e %2 | 7083 }QEDEMEJ:S I nen g%
Stopped
usdee k. | | Single | [2amepe =] || @ oppe i T 100 ISpasam M (029
- Min [008
A

As a comparison between the modes, all transfers in high speed mode (all 160,000 samples) occur

before the first dark blue cursor on the logic analyzer trace below. The Bi-Directional writes from the

SetSignals (16000 samples) occur between the cursors, and the bi-direction reads occur after the

second cursor.

Fle View Setup Help
HEEE LILILIL LLLLLLCLLLLLCLLL UL L LU
E[a[z[s EEEE
Z|Z|2|B
Z|Z|2|B
E|Z|Z|E
||z (=
Z|Z|2|B
Seconds/Division [cursors
T122ms 314ms Tms 131.74ms 151
Al L]|| z
Pod Status | — Acquisition Control — | Trigger Display | - Measurements
Trigger Position xewl vl [0V
c
T Fun | [18300 =] (:::Ea' o F\Pf”l's' ?2 ‘11257‘1"“5 [ems | _v2 00V
ot — o] Ve s A oy P R N
USBe=OK | Single | [=] | @ S WS U008 PS7pasll Maw [02W
“] Clzar Min | 0.08Y
TH

The following traces show the low level timing for the Bi-Directional Mode SetSignal and GetSignal

calls.

USBee DX Oscilloscope and Logic Analyzer

Fle View Sewp Hep
[I I I I I [I
BEEE
e [][Ll L —ru fu Ll L L L L L
z(z|z|=
z(z|z|=
HBEBE
z|z|z|=
HBEEBE
Seconds/Division [Cursors ®1
s 48.77ms
« 3
] :
Pod Status Acquisition Control Trigger Display Measurements
T Posil #2441
T80] || Momal [SEETESEEN e pegy w1 [aa70ms |y il 0.0/
™2 v Fun b4 ’ [Firs | e [ow
Auta Iv Vectors x2 [49.78ms |f
at Stopped T S (T e | V2T [oW
usees Ok | | Single | 2ammps =] || @ a TRZR] Max |02
Min | 0.08
Clear
CH1

Bi-Directional mode SetSignal byte timing

USBee DX Test Pod User’s Manual

171

=i USBee DX Oscilloscope and Logic Analyzer

File View

Seconds/Division

Al
Pod Status

332~

USEee 0K

Setup Help

BTG [GE | | |
BEEE I
EEIE Y e l—ﬂ_lf [
ERERE: R K]
ERERE: R K]
E|Z|Z|E
Z|z|z|E
E|Z|Z|E
[cursors

|

Acquisition Control

Fun

Single

18500 -
at
24 Msps =

Triages Trigger Position

& Narmal

oo Al i
Stoppad

@

Display
[Persist
[Wectars
W Wide

Clear

Measurements

K1 | 165.56ms|

K2 | 165.57ms|

T [00ns

R2H1 w1 [0
[575ws] e |00V
[T0288kHz | Y21 [00V
TR Maw [0237
Min | 008V
CHI

Bi-Directional mode GetSignal byte timing

The above trace shows the end of the SetSignals cycles and the following GetSignals timing. The data

is sampled in the middle of the low clock period.

All of the above traces can have the opposite polarity for the CLK line by setting the appropriate bit in

the SetMode parameter.

In Signal Generator mode, the samples come out at a constant rate defined in the call the

StartGenerate. Below you see a series of samples that are output using the StartGenerate routine

and the resulting sample times.

SBee DX Oscilloscope and L

172

File View Setup Help
T T T T T |
z|z(z|zr
=== I 1t 1 1 1 L
HEBE
z|z|z|z
HEEE
z(z|z|z
z(z|z|z
Seconds/Division [cursors
4 » - L
il Y| —
Pod Status Acquigition Control Trigger . Display Measurements
Trigger Position 2211 v oo
18300 ~| % Mamal I Persist w1 (188 37me]
32 v Run oo L 2 B ectors | | TRE T2 e ye 1om
at Stopped ST e] I T
USBes OK single | [2eMsps =] @ TR Max [0237
o Cloar Min [0087
CH1

USBee DX Test Pod User’s Manual

USBEE DX DATA EXTRACTOR OVERVIEW

The Data Extractors are an option software product for use with the USBee DX Test Pod that allows
engineers to extract the raw data from various embedded busses to store off to disk or stream to
another application. The Data Extractors will collect the raw data from Parallel, Serial, 12C, 12S, Async,
USB Full and Low Speed, SMBus, 1-Wire or CAN busses and store the data to disk or pass it to your
own processing application in real-time.

:\ Custom
B N 3 Code
- w Extractor
e 8
SPI
g‘n Store to
UsB Disk

DATA EXTRACTOR FEATURES

. Uses the USBee DX pod to stream data from your embedded design into your PC

. Captures continuous real-time bus data

. Extracts the transaction data on the fly

. Stores data to disk or process it in real-time

. Runs indefinitely

. Captures entire test sequences

. Monitors embedded system data flows during normal operation

. Processes or stores Megabytes, Gigabytes or Terabytes of data

. Runs as a Windows Command Line executable from the Command Prompt and can be
executed from Batch files containing the desired parameters

. Special Viewer to view and search through the extracted data files quickly

. Lets you write your own software to further process the extracted data using the Extractor
APl libraries.

USBee DX Test Pod User’s Manual 173

BUS TYPES DECODED

. Parallel (internal or external clocking up to 12MHz)
. Serial (internal or external clocking up to 12MHz)
. Async (up to 12Mbaud)

. 12C (SCL up to 4MHz)

. SPI (SPI Clock up to 12MHz)

. 1-Wire (Standard 1-Wire bit rates)

. 12S (bit clock up to 12MHz)

. usB (Low 1.5Mbps and Full Speed 12Mbps USB)
. CAN (up to 12Mbps)

. SM Bus (SM Clock up to 12MHz)

YOUR TESTING SYSTEM

The typical challenge in embedded streaming bus systems is to get the data out of your embedded
system quickly and easily so that you can process it, either to capture a bug in progress or to evaluate
performance. In any case, this can be done with the USBee DX Data Extractor System.

The USBee DX pod is used to stream raw sample data from its 8 digital input lines directly into the PC.
The Data Extractor software modules then take that streaming data and extract your desired data out
of the raw stream using the extractor processing threads. Our sample command line application, as
well as any custom application you write, interfaces to the extractor through a simple Windows DLL
consisting of five function calls. These calls are used to start and extraction, stop an extraction,
gather the data (and how much data) and check for error status.

SYSTEM REQUIREMENTS

. The USBee DX Data Extractors require the following PC configuration:

o Windows® Vista, XP or Windows® 2000 operating system

o Pentium or higher processor

. One USB2.0 High Speed enabled port. It will not run on USB 1.1 Full Speed ports.
o 32MBytes of RAM

o 125MBytes of Hard disk space

It is HIGHLY recommended that the USBee DX and Data Extractors be run together on a separate PC
than the PC controlling the system under test. If your PC is also controlling the system under test you
may not be able to get the maximum sample rates needed for some of the extractors.

After installing the software as below, you can determine the maximum sample rate your system can
achieve by plugging in the USBee DX, run the Logic Analyzer Application and choosing the Setup,

174 USBee DX Test Pod User’s Manual

Sample Rate Test menu option. The sample rate test may take up to 20 seconds. Once the sample
rate test is complete, the Sample Rate drop down box will be filled with the available sample rates for
you machine. The highest sample rate is what your PC can achieve.

To get the highest sample rates, you will want to use a Desktop PC with native USB 2.0 ports on the
motherboard. Some modern Laptops can achieve the maximum of 24Msps, but you will want to
disable all power saving features and run your laptop from the power supply, not the batteries.

SYSTEM SETUP

To configure a system to run these extractors you need the following:

. USBee DX Software Installed (follow instructions on the CD)

. USBee Data Extractors Software Installed (follow instructions on the CD)
. V File Viewer

. USBee DX Pod plugged into a USB 2.0 port on your PC.

INSTALLING THE USBEE DX CD

Do not plug in the USBee DX until after you install the USBee DX CD. Place the USBee DX CD in the
drive and run the setup.exe. This will install all of the drivers and application programs in the proper
directories. Choose the default settings for all installation screens.

INSTALLING THE USBEE DX DATA EXTRACTOR CD

Place the USBee DX Data Extractor CD in the drive and run the setup.exe. This will install all of the
drivers and application programs in the proper directories. Choose the default settings for all
installation screens.

INSTALLING THE V FILE VIEWER

The files that are created by the Data Extractor can be very large and require a special file viewer that
can handle enormous files quickly and easily, both in ASCII text and binary Hexadecimal formats.
With the Data Extractor comes an installation for the V File Viewer which efficiently views huge data
files and allows for quick searching through your data to find the events you are looking for.

To install the V File Viewer, you can either run the v72.exe file from the Data Extractor CD or you can
download it. To download the V File Viewer, go to http://www.fileviewer.com/Download.html and

download the v72.exe file. This is a self-installing program that installs the V File Viewer.

For help on using the V File Viewer, please refer to the Help included with the viewer.

USBee DX Test Pod User’s Manual 175

RUNNING THE COMMAND LINE EXTRACTORS

Once these components are installed correctly you can run the Extractor command prompt
application .exe files. Each of the executables requires a series of command line parameters that tell
the extractor how to process the bus data.

You will need to have full security access for the folders that you are running the applications from
since they write to these directories for output data. If you do not have access, you will need to
either move them or grant yourself access to those directories using the Window Security Settings.

To run the programs, you can do one of two options:

Open a Windows Command Prompt Window, change directory (cd) to your
\ProgramFiles\USBeeDXDataExtractors, and enter the command line including all desired parameters.

or

Edit the batch files (goUSB.bat, gol2C.bat. etc.) to include the parameters you desire. You can then
simply click on the Start Menu items (“Run 12C Batch File etc.) or double click on the batch files
themselves in the Windows Explorer.

For all of the extractors you will need to use the USBee Pod ID on your Pod (on the back of the unit)
as a command line parameter.

BUILDING YOUR OWN PROGRAMS USING THE API

You can also start to build your own processing programs using the source code for the command
prompt applications as a reference point. Each Extractor has a sample project (Visual Studio C++ 6.0)
in the \Program Files\USBee DX Data Extractors directory for you to start with.

In order for your programs to run, you must have installed both the USBee DX CD and the Data
Extractors CD on that same machine.

176 USBee DX Test Pod User’s Manual

ASYNC DATA EXTRACTOR

The Async Bus Data Extractor takes the real-time streaming data from up to 8 embedded
asynchronous buses (UART), formats it and allows you to save the data to disk or process it as it
arrives.

The DX Streaming Data Extractors are optional software modules for use with the USBee DX Test Pod
(required) which must be purchased separately.

ASYNC BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. 8 digital channels

° TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Baud Rates from 1200 baud to 12 Mbaud *

. Data Bit Settings (5, 6, 7 or 8)

. Parity Bit Settings (Mark, Space, Odd, Even, Ignore, None)

. Time Stamps of start of bytes or packets

° Output to Text File (Hex, Decimal, Binary or ASCII)*

. Output to Screen*

° Comma, Space, or Newline Delimited files

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The Async Bus Data Extractor uses any of the 8 signal lines (0 thru 7) and the GND (ground) line.
Connect any of the 8 signal lines to an Async data bus. Connect the GND line to the digital ground of
your system.

EXTRACTOR COMMAND LINE PROGRAM

USBee DX Test Pod User’s Manual 177

The Async Bus Data Extractor includes a Windows Command Prompt executable that lets you operate

the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk

or outputted to the screen depending on these parameters.

To run the Data Extractor:

Install the USBee DX software on your PC

Install the Data Extractor software on your PC
Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port
Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,

Command Prompt.

Change the working directory to the Data Extractor directory

(“cd \program files\USBee Data Extractor\Async”)

Run the executable using the following command line arguments:

AsyncExtractor [-?SADHBICGNX] [-R BaudRate] [-E DataBits] [-L

Parity]

[-M SignalMask] [-Q NumberOfBytes] [-T BytesPesLine] [-V

Timestamp] [-O filename] -P PodID

178

HmExmO n o

<HNXZOOHWT

Display this help screen

Pod ID (required)

Output to filename (default off)

Output to the screen (default off)

Number of output values (default = until keypress)
Baud Rate (9600 baud default)

Number of Data Bits (5,6,7,8-default)

Parity Type (0O=none (default), l=mark, 2=space, 3=even,

Which Signals to capture (l=signall, 128=signal?7, 255=all,

(default))

ASCII Text Values ("1")

Decimal Text Values ("49")

Hex Text Values ("31") default

Binary Text Values ("00110001"

Binary Values (49)

Comma Delimited

Space Delimited (default)

Newline Delimited

No Delimeter

Force Bytes Per Line (no force default)
Timestamps (0=0ff, l=each byte, 2=each channel start)

USBee DX Test Pod User’s Manual

EXAMPLE OUTPUT FILES

AsyncExtractor -O output.dex -P 3209 -C -Q 100000 -R 1000000 -E 8 -L

0 -M 255 -H -V 2

rogram Files

File Edit Yew Favories

Help,

UserCommands

=10 x|

Gridlines Tools

Ol@| @lE|B])&% b | [£ ==

| 1] ‘ 10 | 20 | 30
123456789 /123456789 123456789 | 12345678¢

1 =
2. 2746418333,CH2, 55,44, 01,02,03,04
3. 2746478333, CH3 .55, 44, 01,02,03,04
4. 2746610333, CH2 55,44, 01,02,03,04
5. 2746670333,CH3,55,44,01,02,03,04
£ 2746850333, CH2, 55,44, 01,02,03,04
7. 2746910333 ,CH3,55, 44, 01,02,03,04
G 2747186333 ,CH2,55, 44, 01,02,03,04
9. 2747246333, CH3,55,44,01,02,03,04
10 2747474333,CH2,55, 44, 01,02,03,04
11: 2747534333, CH3,55,44,01,02,03,04
12 2747762333, CH2,55,44,01,02,03,04
13 2747822333,CH3,55,44,01,02,03,04
14: 2748018333, CH2,55, 44, 01,02,03,04
15 2748078333, CH3,55, 44, 01,02,03,04
16 2748322333,CH2,55,44,01,02,03,04
17 2748382333, CH3,55,44,01,02,03,04
18 2748594333,CH2,55,44,01,02,03,04
19 2748654333, CH3,55,44,01,02,03,04
20 2748802333, CH2,55,44,01,02,03,04
21 2748862333,CH3,55,44,01,02,03,04
22 2749106333, CH2,55, 44, 01,02,03,04
23 2749166333, CH3,55, 44, 01,02,03,04
24 2749378333,CH2,55,44,01,02,03,04
25 2749438333, CH3,55,44,01,02,03,04
26 2749586333.CH2.55.44.01.02.03.04
27 2749646333, CH3,55, 44, 01,02,03,04
28 2749874666, CH2 55, 44, 01,02,03,04
29, 2749934666 ,CH3, 55,44, 01,02,03,04
30 2750162666, CH2,55, 44, 01,02,03,04
31 2750222666, CH3,55, 44, 01,02,03,04
32 2750466666,CH2,55, 44,01,02,03,04
33 2750526666, CH3,55, 44, 01,02,03,04
34 3750706666 CH? G5 &A4 01 02 03 04, 7
[Lines 1 ta 33 0% [File Size: 162,42 KB (4,753 lines) [07/13 4

USBee DX Test Pod User’s Manual

179

AsyncExtractor -O output.dex -P 3209 -C -Q 100000 -R 1000000 -E 8 -L
0 -M 255 -H -V 1

“Program Files'USBee AX-Pro Da - Ellﬂ

File Edit ‘iew Favorites UserCommands Gridlines Tools

Help,
Q@] JlEz] sl &5 w2 [E ==

1] | 10 | 20 | 30
123456789 123456789 |123456789 |1234567¢

1 e
2: 3009648333,
30 3009656333, ..
4: 3009666333, ..
S5: 3009676666, . .
6: 3009686666, . .
7. 3009696666, . .
g: 3009706666, ...
9: 3009716666, ...
10: 3009726666, . ..
11: 3009736666, . ..
12: 3009746666, . ..
13 3009756666, ..
14: 3009838666, ..
15: 3009848666, .
16: 3009858666, ..
17: 3009868666, .,
18: 3009878666 ..
19: 3009888666, ..
20 3009898666, . ..
21:

22

23

24

25

26

27

28

29

a0

31

32

33

34

3009900666, | | |
3009918666, | . |
3009928666 . .
3009938666, | | |
3009948666 . . |
3010078666,
3010088666, . .
3010098666, . .
3010108666, | |
3010118666, . .
3010128666, . .
3010138666, | |
3010148666
3010158666 01 Jid|

|L\nes 1to 33 0% |Fi|e Size: 640,41 KB (28,513 lines) [071 4

180 USBee DX Test Pod User’s Manual

AsyncExtractor -S -0 output.dex -P 3209 -C -Q 400 -R 1000000 -E 8 -L

0 -M 255 -Z -H -V 1

' Program Files,USBee AX-Pro Da -3 =l
File Edit Wiew Favorites UserCommands —Gridlines Tools

Help.

Q@] GlE|] sl &z w2 £ ==

| 0 | 10 | 20 | 30 |
123456789 (123456789 123456783 123456789
5907691666, ..

5907701666, ..

C907711666, ..

5907721666, ..

E907731666, ..

5907741666,
E907751666, ..,
5907761666, ...
10: G90777166E, ...
11: G907781666, ...
12: G90779166E, ...
13: 5907801666, ..,
14: G907B836EE. ..
15: G907893666, ..
16: G907903666. ..
17: G907913666, ..
18: 5907923666, ..
19: G907933666, ..
20 5907943666, .. .
21: 5907953666, ...
22: 5907963E66E, ...
23: G907973666, ...
24: 5907983666, ...
25 G907993666,
26 59081236EE,
27: 5908133666, ..
28 5908143666, ..
29: 5908153666, ..
30 5908163666, ..
31: 5908173666, ..
32. 5908183666, ...

33: 5908193666, ...

34 5908203666, .. .80 =l

|L\nes 1to 33 8% |Fi|e Size: 8.95 KB (401 lines) [07/17/200

OO0] U L R

USBee DX Test Pod User’s Manual

181

AsyncExtractor -S -0 output.dex -P 3209 -C -Q 400 -R 1000000 -E 8 -L
0 -M 255 -z -D -V 1

SBee AX-Pro D i =]]
File Edit Yiew Favorites UserCommands Gridlines Tools
Help.

Ql@] @lm|z] sl &%l selw| [==,

| 0 | 10 | 20 | 30 |
123456789 |123456789|123456709 123456789

“ Program Files"

1 a

2. 3376844000, ..

3. 3376854000, ..

4: 3376864000, ..

5. 3376874000, ..

6: 3376884000, ..

73376894000, ..

5: 3376904000, ...

9. 3376914000, . ..
10: 3376924000, . ..
11: 3376934000, ...
120 3376944000, . ..
13: 3376954000, . ..
14: 3377036000, ..
15: 3377046000, ..
le: 3377056000, ..
17 3377066000, ..
18: 3377076000, ..
19: 3377086000, ..
20: 3377096000, . ..
21: 3377106000, . ..
22 3377116000, . ..
23 3377126000, . ..
240 3377136000,
250 3377146000, . ..
260 3377276000, ..
27 3377286000, ..
280 3377296000, ..
29: 3377306000, ..
30: 3377316000, ..
31: 3377326000, .
32 3377336000, . ..
330 3377346000,

34 33773860000 128 0 =l
[Lines 1 to 33 8% [File Size: 9,37 KB (401 lines) [07/17/200 4

182 USBee DX Test Pod User’s Manual

AsyncExtractor -S -0 output.dex -P 3209 -0 400 -R 1000000 -E 8 -L O
-M 255 -z -H -G -V 3

Program Files'ISBee AX-Pro D i =]]
File Edit Yiew Favorites UserCommands Gridlines Tools
Help.

Ql@] @lm|z] sl &%l selw| [==,

| 0 | 10 | 20 | 30 |
123456709 |123456769(123456709 (123456769 |1

1: a
2: CH2 Ak 55 80 40 CO 20 i
3: CH3 AA 55 80 40 CO 20
4: CH2 Ak 55 80 40 CO 20
S5: CH3 A4 55 80 40 CO 20
6: CH2 A4 55 80 40 CO 20
7. CH3 AA 55 80 40 CO 20
5: CH2 A4 55 80 40 CO 20
9: CH3 A4 55 80 40 CO 20

10: CH2 A& 55 80 40 CO 20

11: CH3 A& 55 80 40 CO 20

12: CH2 A4 55 80 40 CO 20

13: CH3 A& 55 80 40 CO 20

14: CH2 A4 55 80 40 CO 20

15: CH3 A& 55 80 40 CO 20

1e: CH2 A4 55 80 40 CO 20

17: CH3 A& 55 80 40 CO 20 L

18: CH2 A4 55 80 40 CO 20

19: CH3 A4 55 80 40 CO 20

20: CHZ2 A& 55 80 40 CO 20

21: CH3 A4 55 80 40 CO 20

22: CH2 Aa 55 80 40 CO 20

23: CH3 A4 55 80 40 CO 20

24: CH2 A4 55 80 40 CO 20

25: CH3 A& 55 80 40 CO 20

260 CHZ2 A4 55 80 40 CO 20

27: CH3 AA 55 80 40 CO 20

28: CH2 A4 55 80 40 CO 20

29: CH3 A4 55 80 40 CO 20

30: CHZ A& 55 80 40 CO 20

31: CH3 A4 55 80 40 CO 20

32: CH2 AAd 55 80 40 CO 20

33: CH3 A4 55 80 40 CO 20

34: CH2 A4 55 80 40 CO 20 =l
[Lines 1 to 33 473 [File Size: 1.56 KB (6 lines) [07/17/200¢ %

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

|DLL FILENAME:

usbedAsync.dll in \Windows\System32

|DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

USBee DX Test Pod User’s Manual 183

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV API StartExtraction(unsigned long PodNumber,
unsigned long BaudRate, unsigned int DataBits, unsigned int Parity,
unsigned char Channels, unsigned char MSFirst, unsigned char
StopBits)

PodNumber: Pod ID on the back of the USBee DX Test Pod
BaudRate: Baud rate of the async channels. All channels are decoded at the same rate.
Data Bits: Number of Data bits (5, 6, 7 or 8)

Parity:
. 0 = No parity bit
. 1 = Mark Parity
. 2 =Space Parity
. 3 = Even Parity
. 4 = 0dd Parity

MSFirst:

. 0 = Least Significant Bit first
. 1 = Most Significant Bit first

Channels: Bit mask for which channels to decode (1 = signal 0, 128 = signal 7)

184 USBee DX Test Pod User’s Manual

StopBits:
. 2 =1 Stop Bit time
. 3 = 1.5 Stop Bit times
. 4 =2 Stop Bit times

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV_API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);

Return:

. 0— No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

USBee DX Test Pod User’s Manual 185

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The Async Bus Extractor uses the following format for the data in this buffer:

Byte 0: Timestamp LSByte (in nanoseconds since start)

Byte 1: Timestamp

Byte 2: Timestamp

Byte 3: Timestamp

Byte 4: Timestamp

Byte 5: Timestamp

Byte 6: Timestamp

Byte 7: Timestamp MSByte

Byte 8: Record Type (bit 1 = 1 means character data is valid)

Byte 9: Channel number (0 thru 7)

Byte 10: Character

Byte 11: Errors (Bit 0 = Parity Error, Bit 1 = Framing (Stop) error)
Byte 12: Control Signal States (all 8 signal bits except async
channels)

Byte 13: reserved

Byte 14: reserved

Byte 15: reserved

(repeat)

EXAMPLE SOURCE CODE

//**
// USBee DX Data Extractor
// Async Bus Extractor Example Program

// Copyright 2006, CWAV All Rights Reserved.
//**

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR REV 1
#define MINOR_REV 0

R

// Declare the Extractor DLL API routines
//**

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned long PodNumber, unsigned long BaudRate,
unsigned int DataBits, unsigned int Parity, unsigned char Channels, unsigned char MSFirst,
unsigned char StopBits);

CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
CWAV_IMPORT int CWAV_API StopExtraction(void);

CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);

CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

[Kk Kk ko Kk ok K KKk ok Kk Kk K Kk KK KK K KK Kk K K KKk KKk

186 USBee DX Test Pod User’s Manual

// Define the working buffer
//**

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING_BUFFER _SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O_OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char Y_LeastSignificantBitFirst = TRUE;
unsigned char Z MostSignificantBitFirst = FALSE;
unsigned char A_ASCIITextValues = FALSE;
unsigned char D_DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;
unsigned char B_BinaryTextValues = FALSE;
unsigned char I_BinaryValues = FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = TRUE;
unsigned char N_NewlineDelimited = FALSE;
unsigned char X NoDelimeter = FALSE;
unsigned long T_ForceBytesPerLine = 0;
unsigned long M _SignalMask = OxFFFFFFFF;
unsigned long Q NumberOfBytes = 0;
unsigned long R_BaudRate = 9600;

unsigned long E_DataBits = 8;

unsigned long L_Parity = 0;

unsigned long V_Timestamps = 0;

unsigned long F_StopBits = 2;

typedef struct {

__int64 TimeStamp; // 64-bit time stamp at the start of this character
or control signal change

unsigned char RecordType; // If the Character value is valid (1=Character is
good, O=Character is don't care)

unsigned char Signal; // What channel this was sent on (0-7)

unsigned char Character; // Actual character data

unsigned char Errors; // Decodng error values (framing error, parity
error)

unsigned char Control; // Control signal states starting here

} AsyncEvent;
AsyncEvent *AEvent;

void DisplayHelp (void)
{

fprintf (stdout, "\nAsyncExtractor [-?SADHBICGNXYZ] [-R BaudRate] [-E DataBits] [-L
Parity] [-M SignalMask] [-Q NumberOfBytes] [-V Timestamp] [-O filename] -P PodID\n");
fprintf (stdout, "\n ? - Display this help screen\n");

fprintf (stdout,"\n USBee DX Pod to Use\n");
fprintf (stdout, " P - Pod ID (required)\n");
fprintf (stdout,"\n Output Location Flags\n");

fprintf (stdout, " O - Output to filename (default off)\n");
fprintf (stdout, " S - Output to the screen (default off)\n");

fprintf (stdout,"\n When to Quit Flags\n");
fprintf (stdout," Q - Number of output values (default = until keypress)\n");

fprintf (stdout,"\n Input Format Flags\n");

fprintf (stdout, " R - Baud Rate (9600 baud default)\n");

fprintf (stdout, " E - Number of Data Bits (5,6,7,8-default)\n");

fprintf (stdout, " L - Parity Type (O=none(default), l=mark, 2=space, 3=even,
4=odd) \n") ;

fprintf (stdout, " M - Which Signals to capture (l=signal0O, 128=signal7, 255=all,
O=none (default))\n");

fprintf (stdout, " Y - LSBit first (default)\n");

fprintf (stdout, " 72 - MSBit first\n");

fprintf (stdout, " F - Number of Stop Bits (2=1 (default), 3=1.5, 4=2)\n");

fprintf (stdout, "\n Output Number Format Flags\n");

USBee DX Test Pod User’s Manual 187

fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

ASCII Text Values (\"1\")\n");

Decimal Text Values (\"49\")\n");

- Hex Text Values (\"31\") default\n");
Binary Text Values (\"00110001\")\n");
Binary Values (49)\n");

Comma Delimited\n");

- Space Delimited (default)\n");

- Newline Delimited\n");

No Delimeter\n");

XZooHwWwDmow
|

fprintf (stdout,"\n Timestamp and Channel Labels\n");

fprintf (stdout, " V - Timestamps and Labels (0=Both off (default),1=Time each
byte,2=Time and Labels,3=Labels Only)\n");

}

void Error (char *err)

{
fprintf (stderr, "Error: ");
fprintf (stderr, "$s\n",err);
exit (2);

R R B B
// Parse all of the command line options
//**
void ParseCommandLine (int argc, char *argv[])
{

BOOL cont;

int i,3;

DWORD WordExample;

BYTE ByteExample;

for(i=1; i < argc; ++i)
{
if ((argv[i] [0) == '=') || (argv[i][0] == '/")
{
cont = TRUE;
for(j=l;argv[i] [J] && cont;++3) // Cont flag permits multiple commands
in a single argv (like -AR)
switch (toupper (argv[i] [§]1))
{

case 'P':
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case '0O':

strcpy ((char*)O_OutputFilename, argv[++i]);
cont = FALSE;
break;
case '?':
DisplayHelp () ;
exit (0);

break;

case 'S':
S_Screen = TRUE;
break;

case 'Y':
Y LeastSignificantBitFirst = TRUE;
Z_MostSignificantBitFirst = FALSE;
break;

case 'Z':
Z_MostSignificantBitFirst = TRUE;
Y LeastSignificantBitFirst = FALSE;
break;

case 'A':
A ASCIITextValues = TRUE;
H_HexTextValues = FALSE;
break;

case 'D':
D DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

case 'H':

188 USBee DX Test Pod User’s Manual

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

H_HexTextValues = TRUE;
break;

'B':

B_BinaryTextValues = TRUE;
H HexTextValues = FALSE;
break;

‘I

I_BinaryValues = TRUE;

H HexTextValues = FALSE;
break;

'cre

C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;

'G':

G_SpaceDelimited = TRUE;
break;

'N':

N_NewlineDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;

'X':

X_NoDelimeter = TRUE;
G_SpaceDelimited = FALSE;
break;

o

Q_ NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);

cont = FALSE;

break;

'E':

E_DataBits = (DWORD)strtol (argv[++i],NULL,O0);
cont = FALSE;

break;

'M':

M _SignalMask = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'F':

F_StopBits = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'V

V_Timestamps = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'R':

R_BaudRate = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'L':

L_Parity = (BYTE)strtol (argv([++i],NULL,0);
cont = FALSE;

break;

'w':

WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'b':

ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;

break;

default:

DisplayHelp () ;
fprintf (stdout, "\nCommand line switch %c not

recognized\n", toupper (argv[i] [j]));

Error ("Invalid Command Line Switch");
exit (0);

// Now check to see if they make sense

if (P_PodID == 0)
{
DisplayHelp () ;

Error ("No Pod Number Specified");

USBee DX Test Pod User’s Manual

189

[KKK K Kk K K ko Kk KK Kok Kk Kk K Kk KK Kk Kk KKk Kk Kk K Rk Kk K

// Main Entry Point. The program starts here.
//**

int main(int argc, char* argv[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

printf ("DX Data Extractor\n");
printf ("Async Bus Extractor Version %d.%d\n", MAJOR_REV, MINOR_REV) ;

// Parse out the command line options
ParseCommandLine (argc, argv);

] Kk ok K Kk o K KK K KKK K KKK K KKK K K XK KKK KKK KKK KK KX

// Open up a file to store extracted data into
R B B R S T

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0O OutputFilename, "w");
}

[Kk o K KK o K KK K KK K KKK K KKK KK K XK K KKK K KKK KK KX

// Start the DX Pod extracting the data we want

[k o ok ok o ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok ok Kk

printf ("BaudRate=%d DataBits=%d Parity=%d StopBits=%g\n", R_BaudRate, E_DataBits,
L_Parity, F _StopBits/2.0);

RetValue = StartExtraction(P_PodID, R_BaudRate, E_DataBits, L_Parity, M SignalMask,
Z_MostSignificantBitFirst, F_StopBits);

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n") ;
printf ("Press any key to continue...");
getch();
return(0) ;

R s

// Loop and do something with the collected data
//**

char 0l1dSignal = 99;

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction(); // Stop the streaming of data from the USBee

}

s

// If there is data that has come in
//**
int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{
if (length > WORKING_BUFFER SIZE)
length = WORKING_ BUFFER SIZE;

[KKk Kk kK ko Kk K K Kok Kk K K K KK Kk K K KK Kk K Kk ok Kk K

// Get the data into our local working buffer

190 USBee DX Test Pod User’s Manual

]k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok KKk ok Kk

GetNextData (tempbuffer, length);

if (I_BinaryValues) // Just write out the binary data to a file
{
totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (Q_NumberOfBytes)

! if (Q_NumberOfBytes <= length)
(goto Done; // Done with that many bytes
éiNumberOfotes -= length;

else // It's a text output so format it

// Now figure out what to send to the output

for (unsigned long x = 0; x < length; x += sizeof (AsyncEvent))
{
AEvent = (AsyncEvent *)&tempbuffer([x];
if (AEvent->RecordType != 1) // This type of record records the

edge changes of the other signals
{
continue; // Since we only print out the characters
}
int Channel = AEvent->Signal;

[K o K KK o K KKK K KKK K K KKK K K XK KK K KKK KKK K K XK K XK K

// Print the Timestamps and Channel Labels (if requested)

]k ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kok ok ok ok Kk ok ok o Kk ok ok ok K

if ((V_Timestamps == 1) || ((V_Timestamps >= 2) && (OldSignal !=
AEvent->Signal)))
{
if (V_Timestamps == 1) // Print just the timestamp
{
if (C_CommaDelimited)
sprintf (outputstr, "\n%I64d,",AEvent->TimeStamp) ;

if (G_SpaceDelimited)
sprintf (outputstr,"\n%I64d ",AEvent->TimeStamp) ;

// Now send it out to the screen or file
if (S_Screen)
fputs (outputstr, stdout);

if (O_OutputFilename[0])
fputs (outputstr, fout);

outputstr[0] = 0;

else if (V_Timestamps == 2) // Print timestamp and
channel number

if (C_CommaDelimited)
sprintf (outputstr, "\n%I64d,CH%d, ", AEvent—
>TimeStamp,AEvent->Signal) ;

if (G_SpaceDelimited)
sprintf (outputstr,"\n%I64d CH%d ",AEvent-
>TimeStamp,AEvent->Signal) ;
// Now send it out to the screen or file
if (S_Screen)

fputs (outputstr, stdout);

if (O_OutputFilename[0])
fputs (outputstr, fout);

outputstr[0] = 0;

USBee DX Test Pod User’s Manual 191

else if (V_Timestamps == 3) // Print just the channel

number
{
if (C_CommaDelimited)
sprintf (outputstr, "\nCH%d, ", AEvent->Signal) ;
if (G_SpaceDelimited)
sprintf (outputstr, "\nCH%d ",AEvent->Signal);
if (S_Screen)
fputs (outputstr, stdout);
if (O_OutputFilename[0])
fputs (outputstr, fout);
outputstr[0] = 0;
}
0OldSignal = AEvent->Signal;
}
//**
// Print out the actual Async Channel Data
//**
if (V_Timestamps == 1) // Print the "Timestamp every byte"
format
{
for (int y = 0; y < 8;y++)
{
if (Channel == y) // Print a value here
{
OutputValue = AEvent->Character;
// Now convert the value into the output text
if (A_ASCIITextValues)
{
outputstr[0] = (unsigned char)OutputValue;
outputstr[l] = 0;
}
if (D_DecimalTextValues)
{
sprintf (outputstr, "$03d",OutputValue) ;
}
if (B_BinaryTextValues)
{
int count;
count = 8;
unsigned int mask = 1 << (count - 1);
for (int z = 0; z < count; z++)
{
if (OutputValue & mask)
outputstr[z] = '1';
else
outputstr(z] = '0';
mask /= 2;
}
outputstr(z] = 0;
}
if (H_HexTextValues)
{
sprintf (outputstr, "$02X", OutputValue) ;
}
totalbytes++;
if (Q_NumberOfBytes)
if (--Q_NumberOfBytes == 0)
{
goto Done; // Done with that
many bytes

}
// Now add delimeters
if (C_CommaDelimited)

192 USBee DX Test Pod User’s Manual

strcat (outputstr, ",");

if (G_SpaceDelimited)
strcat (outputstr, " ");

if (N_NewlineDelimited)
strcat (outputstr, "\n");

// Now send it out to the screen or file
if (S_Screen)
fputs (outputstr, stdout);

if (O_OutputFilename[0])
fputs (outputstr, fout);

outputstr[0] = 0;

else // Print the "each line is a single channel" format

{
OutputValue = AEvent->Character;

// Now convert the value into the output text
if (A_ASCIITextValues)
{
outputstr[0] = (unsigned char)OutputValue;
outputstr[l] = 0;

if (D_DecimalTextValues)

{ sprintf (outputstr, "%03d",OutputValue) ;
if (B_BinaryTextValues)

{ int count;

count = 8;
unsigned int mask = 1 << (count - 1);
for (int z = 0; z < count; z++)

{
if (OutputValue & mask)

outputstr(z] = '1';
else
outputstr[z] = '0';
mask /= 2;
}
outputstr[z] = 0;

}
if (H_HexTextValues)
{
sprintf (outputstr,"%02X", OutputValue);
}

totalbytes++;

if (Q_NumberOfBytes)
if (--Q_NumberOfBytes == 0)
{
goto Done; // Done with that many bytes
}

// Now add delimeters
if (C_CommaDelimited)
strcat (outputstr, ",");

if (G_SpaceDelimited)
strcat (outputstr, " ");

if (N_NewlineDelimited)
strcat (outputstr, "\n");

// Now send it out to the screen or file

if (S_Screen)
fputs (outputstr, stdout);

USBee DX Test Pod User’s Manual 193

if (O_OutputFilename[0])
fputs (outputstr, fout);

outputstr[0] = 0;

if (timeout++ > 10) break; // Let up once in a while to let the OS
process

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[K K o K KK K KK K KKK K KKK K K XK K XK KK K KKK KK KK KKK KX

// Check to see if we have fallen behind too far
]

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

K KK K KK K KKK K KKK K KKK KK KKK KK K XK K XK KKK KKK KK KX

// Give the 0S a little time to do something else

S

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//***~k~k~k~k***

// Close the file

s

if (O_OutputFilename[0])
fclose (fout) ;

K K ok K K o K KK o K KKK K KK K K KKK K K XK K K KKK K KKK KX

// Stop the extraction process
N R R R R R R R R e]

StopExtraction();
if (kbhit ()) getch();
printf ("\nPress any key to continue...");

getch();

return 0;

194 USBee DX Test Pod User’s Manual

PARALLEL BUS DATA EXTRACTOR

The Parallel Bus Data Extractor takes the real-time streaming data from an embedded 8-bit parallel
bus, formats it and allows you to save the data to disk or process it as it arrives.

PARALLEL BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. 8 digital channels

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Synchronous or Asynchronous Clocking

. Synchronous (external) clock 0 to 16MB/s*

. Asynchronous (internal) clock 1IMB/s to 24MB/s*

. Input in 1, 2 or 4 byte serial words

. Little or Big Endian

. Output to Binary File*

. Output to Text File (Hex, Decimal, Binary or ASCII)*

. Output to Screen*

. Comma, Space, or Newline Delimited files

. Output Value Filtering

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The Parallel Bus Data Extractor uses the 8 signal lines (0 thru 7), the GND (ground) line and optionally
the CLK and TRG lines (for external timing). The signal O is represented in the bit 0 of each sampled
byte. Connect the GND line to the digital ground of your system.

USBee DX Test Pod User’s Manual 195

EXTRACTOR COMMAND LINE PROGRAM

The Parallel Bus Data Extractor includes a Windows Command Prompt executable that lets you
operate the Data Extractor without writing any software. The program is executed in a Command
Prompt window and is configured using command line arguments. The extracted data is then stored
to disk or outputted to the screen depending on these parameters.

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\Parallel”)

. Run the executable using the following command line arguments:

BasicExtractor [-?SADHBICGNX124Y7Z] [-E clock mode] [-Q
NumberOfBytes] [-T BytesPesLine] [-R SampleRate] [-M SignalMask] [-L
FilterValue] [-V FilterMask] [-O filename] -P PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)
S - Output to the screen (default off)
Q - Number of output values (default = until keypress)
1 - One Byte per value (default)

2 - Two Bytes per value

4 - Four Bytes per value

Y - Least significant byte first

A - ASCIl Text Values ("1")

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

196 USBee DX Test Pod User’s Manual

B - Binary Text Values ("00110001")

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

N - Newline Delimited

X - No Delimeter

T - Force Bytes Per Line (no force default)

M - Which Signals to capture (1=signal0,255=all(default))
L - Filter Mask (0=no filter,255=filter on all signals)

V - Filter Value (O=store when 0's,255=store when 1's)

E - Clocking mode (

. 2=internal (default),

. 4=CLK rising, 5-CLK falling,

. 6-CLK rising AND TRG high, 7-CLK falling AND TRG high
. 8-CLK rising AND TRG low, 9-CLK falling AND TRG low

R - Internal CLK Sample Rate (1Msps default)

. 247 = 24MHz
. 167 = 16MHz
. 127 =12MHz

. 87 = 8MHz
. 67 = 6MHz
. 47 = 4MHz
. 37 =3MHz
. 27 = 2MHz

. 17 = 1MHz (default)

USBee DX Test Pod User’s Manual 197

EXAMPLE OUTPUT
BasicExtractor -O output.dex -P 3209 -1 -R 27 -T 8 -Q 2000000 -I

rogram Files'ISBee AX-Pro Data Extractors'output.dex =10 x|

File Ei Wiew Favortes UserCommands Gridlines Tools Help,

00 01 05 06 07 08
nooooooo FF OFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF VYTV Fvvy il
goooogln FF OFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF VYVVYVYTIYVTTYY
oooooozo FF FF FF FF FF FF
ooooooan FF FFE FF FF FF FF
oooooo4n FF FF FF FF FF FF
oooooosn FF FF FF FF FF FF
ooooooel FF FF FF FF FF FF
oooooo?o FF FF FF FF FF FF
gooooosl FF FF FF FF FF FF
oooooosn FF FF FF FF FF FF
ooooooil FF FF FF FF FF FF
ooooooeEd FE FE FF FF FF FF
ooooooco FF FF FF FF FF FF
oooooopd FF FF FF FF FF FF
ooooooEdl FF FE FF FF FF FF
000000FD FF FF FF FF FF FF
oooooiod FF FF FF FF FF FF
oooooilo FF FFE FF FF FF FF
oooooizo FF FF FF FF FF FF
oooooisn FF FF FF FF FF FF
oooooid4n FF FF FF FF FF FF
oooooiso FF FF FF FF FF FF

lLines 1 to 22

BasicExtractor -0 output.dex -P 3209 -1 -R 27 -T 8 -Q 2000000 -C

=10l x|
File Edit Wiew Favorites UserCommands — Gridlines
Tools Help,

ol @lulE] el &% |G|

|123456?89|123456?89|123456?89|12
fE £, ££ . ££ ££ £f £f ff, -

S0 ED T U L T
h
Hh
=
Hh
=
Hh
=
Hh
"
Hh
P-h
Hh
=
Hh
=
"

26 ff.ff.ff. ff.ff.ff.fF ff. =
|mauws 0% File Size: 6.2 MB (250,000 lines)

198 USBee DX Test Pod User’s Manual

BasicExtractor -O output.dex -P 3209 -1 -R 27 -T 8 -Q 2000000 -C -4

USBee AX-Pro Data Extractors',output.dex =] 4

File Edit Wiew Favorites UserCommands Gridlines Tools Help.

G| lE|E] s 6] 7| Gse e [E &

|_I_|_|_|_I

|123456?89|123456?89|123456?89|123456?89|123456?89|123456?89|123456?89|123456?8

1. EEfE£££Ff fE£££84F fEELE6£F £EEE4688 fEEFE66F £EEEEF£64 FEEEE66F FEEE£E£8, -
20 PEfEE££f fE£££84F fEELE6£F £EEE46848 fEEEEE6F £ELEEFE68 FEEEEEEF FEEE£E£E,
30 PEEEf£F£Ff fEE6664F fEEEEFFF fEEFE66F fEFFEEFF £EFEFE6F FEFFFEEF FEEFFFEF
4 PEfEE££f fEEf684F fEELE66F £EEE6688 fEEECE6F £EEEFE88 FEEE866F FEE6£668,
o PEffE££f fE£££84F fEELE8£F £EEE6848 fEEFE68F £EEEEF£64 FEEEEE6EF FEEE£E£E,
o EEFEEFFEFf FEEEE66Ff fEEEE66F fEEE884F FEFEEFFF FEFFFFFF FEELEEEE FEFEEEEE
PooPEfEEf£ff fEfE£88Ff fEELE6£F £E£F468F fE£6CE68F £EEEFF£68 FEEE866F fEE££668,
O PEffE££f fE£f£84F fEELE6£F £EEE4888 fEEFE68F £EEEEF£64 FEEEE6E6F FEEE£6£E,
9. PEfEE££f fE£f££4F fEELE££F £EEE46848 fEEEEE6F £EEEEFE68 FEEEEEEF FEEE£E6E,
10 PEff£££f £EE£8£Ff fEEEE£6Ff fEF£88£F fELE0EFFf £EE6664F fEE£066F £E£££6468
11 EEfE£F£Fff £EE£8£F6F fEEEE£6F £EEE68£F FEEEEEEF £EEFF64F fEEEE66F £E£E££4£E
12 EffE££ff £EE££4£F6F fEEEE£F6F fEEEE8£F fEEEEEEF £EEEFE64F fEEEEE6F £EEE£6£E
13: fEEFE£F£F fEEEE66F fEEE666F fEEE884F FEFEFFEF FEFFFF£F fEEEEEFF fEEEEEEF
14 PEEE£££f £EE686Ff fECEEE6E £EFE886f fEEE0EEEf £EEEE68F fEEE006F £EEE£6468,
15 EffE££ff £EE£8£FF fEEEE£6F £EEE686F FEEEEEEF £EEFF64F fEEEE66F £E£EE£64£E

16: EEfE£££Ff FEEf£££f fEEEE66F fEE68888 £EEEEEEE FEEEEEEE FEEEEEEE FEEEEE6F. :J

|L\nes Lto 16 0% |F|\e Size: 17.64 ME (256,944 records in file) [07/17/2006 20:03] |Chunk1 of 3 2

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

|DLL FILENAME:

usbedBasic.dll in \Windows\System32

|DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed

USBee DX Test Pod User’s Manual 199

length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 — Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned int SampleRate,
unsigned long PodNumber, unsigned int ClockMode) ;

SampleRate:

. 17 = 1Msps
. 27 = 2Msps
. 37 =3Msps
. 47 = 4Msps
. 67 = 6Msps
. 87 = 8Msps
. 127 = 12Msps
. 167 = 16Msps
. 247 = 24Msps

PodNumber: Pod ID on the back of the USBee DX Test Pod

ClockMode:

. 2 = Internal Timing as in SampleRate parameter

. 4 — External Timing — sample on rising edge of CLK

. 5 — External Timing — sample on falling edge of CLK

. 6 — External Timing — sample on rising edge of CLK and TRG high
. 7 — External Timing — sample on falling edge of CLK and TRG high
. 8 — External Timing — sample on rising edge of CLK and TRG low
. 9 — External Timing — sample on falling edge of CLK and TRG low

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress

CWAV_EXPORT int CWAV_ API StopExtraction(void);

200 USBee DX Test Pod User’s Manual

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions
CWAV_EXPORT char CWAV API ExtractBufferOverflow(void);

Return:

. 0 - No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

USBee DX Test Pod User’s Manual 201

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The Parallel Bus Extractor uses the following format for the data in this buffer:

Byte O: Byte 0 of the sampled data
Byte 1: Byte 1 of the sampled data
Byte 2: Byte 2 of the sampled data
Byte 3: Byte 3 of the sampled data
Byte N: Byte N of the sampled data

EXAMPLE SOURCE CODE

//**
// USBee DX Data Extractor
// Parallel Bus Extractor Example Program

// Copyright 2006, CWAV All Rights Reserved.
//**

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fecntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR_REV 0

s

// Declare the Extractor DLL API routines
//**

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned int SampleRate, unsigned long PodNumber,
unsigned int ClockMode);

CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
CWAV_IMPORT int CWAV_API StopExtraction(void);

CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);

CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

[K ok kK ok K KK o KK KKK KX K KKK K K XK KKK K KX

// Define the working buffer

s

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char _1 BytePerValue = TRUE;
unsigned char _2 BytePerValue = FALSE;

202 USBee DX Test Pod User’s Manual

unsigned char _4_ BytePerValue = FALSE;

unsigned char Y LeastSignificantByteFirst = FALSE;
unsigned char Z_MostSignificantByteFirst = TRUE;
unsigned char A_ASCIITextValues = FALSE;
unsigned char D DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;

unsigned char B_BinaryTextValues = FALSE;
unsigned char I_BinaryValues = FALSE;

unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = TRUE;

unsigned char N_NewlineDelimited = FALSE;
unsigned char X NoDelimeter = FALSE;

unsigned long T_ForceBytesPerLine = 0;

unsigned long M _SignalMask = OxFFFFFFFF;
unsigned long L _FilterMask = 0;

unsigned long V_FilterValue = 0;

unsigned char E_ExternalClockMode = 2;

unsigned char R_SampleRate = 17;

unsigned long Q NumberOfBytes = 0;

// Not used yet J,K,Q,U,W

void DisplayHelp (void)
{

fprintf (stdout, "\nBasicExtractor [-?SADHBICGNX124YZ] [-Q NumberOfBytes]
BytesPesLine] [-R SampleRate] [-M SignalMask] [-L FilterValue]
filename] -P PodID\n\n")

fprintf (stdout, " ? - Display this help screen\n")

fprintf (stdout,"\n USBee DX Pod to Use\n");
fprintf (stdout, " P - Pod ID (required)\n");

fprintf (stdout,"\n Output Location Flags\n");

fprintf (stdout, " O - Output to filename (default off)\n")
fprintf (stdout, " S - Output to the screen (default off)\n")

fprintf (stdout,"\n When to Quit Flags\n");

fprintf (stdout, " Q - Number of output values (default

fprintf (stdout,"\n Input Number Format Flags\n");
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

- Two Bytes per value\n");
- Four Bytes per value\n");
- Least significant byte first\n")
- Most significant byte first\n")

NS N

fprintf (stdout, "\n Output Number Format Flags\n");
fprintf (stdout," - ASCII Text Values (\"1\")\n")
fprintf (stdout, " D - Decimal Text Values (\"49\") \n")
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

Binary Values (49)\n");

Comma Delimited\n");

Space Delimited (default)\n");
Newline Delimited\n");

- No Delimeter\n");

HXZOOQHWT
|

fprintf (stdout,"\n Filter Values\n");

fprintf (stdout," M - Which Signals to capture (l=signal0,255=all(default))\n");
fprintf (stdout, " L - Filter Mask (0O=no filter,255=filter on all signals)\n");
fprintf (stdout, " V - Filter Value (O=store when 0's,255=store when 1's)\n");

fprintf (stdout,"\n Clocking Modes\n")

fprintf (stdout, " E - Clocking mode (2=internal (default),

[-V FilterMask]

until keypress)\n")

- One Byte per value (default)\n")

- Hex Text Values (\"31\") default\n")
- Binary Text Values (\"00110001\")\n");

Force Bytes Per Line (no force default)\n");

fprintf (stdout, "
fprintf (stdout, "

TRG high\n")

fprintf (stdout, "

low\n");

}

fprintf (stdout, "

exit (0);

void Error (char *err)

{

4=CLK rising,5-CLK falling,\n");
6-CLK rising AND TRG high,7-CLK falling AND

8-CLK rising AND TRG low, 9-CLK falling AND TRG

R - Internal CLK Sample Rate (1Msps default)\n")

fprintf (stderr, "Error: ");

fprintf (stderr,
exit (2);

no

%s\n",err) ;

USBee DX Test Pod User’s Manual 203

[k ok ok ok Kk ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o Kk

// Parse all of the command line options
//**

void ParseCommandLine (int argc, char *argv[])

{
BOOL cont;
int i,3;
DWORD WordExample;
BYTE ByteExample;

for(i=1; i < argc; ++i)

{

if ((argv([i][0] == '-') || (argv[i][0] == '/")

{
cont = TRUE;

for(j=1l;argv[i] [J] && cont;++3)

in a single argv (like -AR)

switch (toupper (argv[i] [j]))

{

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

204

ipr.
P_PodID = (WORD)strtol (argv[++i],NULL,0) ;
cont = FALSE;

break;

o'

strcpy ((char*)O0_OutputFilename, argv[++i]);
cont = FALSE;

break;

et

DisplayHelp () ;

break;

'St

S_Screen = TRUE;

break;

"1t

_1 BytePerValue = TRUE;
break;

'2':

_2_BytePerValue = TRUE;

_1 BytePerValue = FALSE;
break;

'4:

_4 BytePerValue = TRUE;

_1 BytePerValue = FALSE;
break;

'Y':

Y LeastSignificantByteFirst = TRUE;
Z_MostSignificantByteFirst = FALSE;
break;

'z
Z_MostSignificantByteFirst = TRUE;
Y_LeastSignificantByteFirst = FALSE;
break;

'A':

A _ASCIITextValues = TRUE;
H_HexTextValues = FALSE;
break;

'D':

D_DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

'H':

H_HexTextValues = TRUE;
break;

'B':

B_BinaryTextValues = TRUE;
H_HexTextValues = FALSE;
break;

'I':

I_BinaryValues = TRUE;
H_HexTextValues = FALSE;
break;

'cr:

C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;

'G':

G_SpaceDelimited = TRUE;

USBee DX Test Pod User’s

// Cont flag permits multiple commands

Manual

break;

case 'N':
N_NewlineDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;

case 'X':
X_NoDelimeter = TRUE;
G_SpaceDelimited = FALSE;

break;

case 'T':
T_ForceBytesPerLine = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'Q':
Q_ NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'M':
M _SignalMask = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'L':
L_FilterMask = (DWORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case 'V':
V_FilterValue = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'E':
E_ExternalClockMode = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'R':
R_SampleRate = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;

default:
DisplayHelp () ;

Error ("Invalid Command Line Switch");

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

}

unsigned long StartTime;

void StartTimer ()

{

StartTime = GetTickCount();
}

void StopTimer ()

{
printf (" \nTime Delta = %d\n",GetTickCount() - StartTime);

}

[K ok K ok K Kk o KK KK KX K KKK K KKK KKK K K X

// Main Entry Point. The program starts here.
N R R R R R e]

USBee DX Test Pod User’s Manual 205

int main(int argc, char* argv[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

;

printf ("DX Data Extractor\n");
printf ("Parallel Bus Extractor Version %d.%d\n", MAJOR_REV, MINOR_REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen ((char*)0 OutputFilename, "wb");
else
fout = fopen((char*)0_OutputFilename, "w");

}

[k o ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kk

// Start the DX Pod extracting the data we want
//**

RetValue = StartExtraction(R_SampleRate, P_PodID, E_ExternalClockMode);

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n") ;
printf ("Press any key to continue...");
getch();
return (0) ;

}
printf ("Processing and Saving Data to Disk.\n");
[KRRk Kk ko ko kK kK kK ok Kk kK Kk Kk Kk Kk K kK kKR Kk Kk K K Kk Kk K

// Loop and do something with the collected data
[KRRk Kk ko ko kK kK kK ko ko kK kKR Kk Kk ko kK kKR Kk Kk K R K kK kK

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction() ; // Stop the streaming of data from the USBee

}

s

// If there is data that has come in
//**

int timeout = 0;
while (unsigned long length = ExtractionBufferCount())

{
if (length > WORKING_BUFFER SIZE)
length = WORKING_BUFFER SIZE;

s

// Get the data into our local working buffer
//**

StartTimer () ;
GetNextData (tempbuffer, length);
if (I_BinaryValues) // Just write out the binary data to a file

{
totalbytes += length;

206 USBee DX Test Pod User’s Manual

if (O_OutputFilename[0])

fwrite (tempbuffer, length, 1, fout); // Write it to a file
if (Q_NumberOfBytes)
(if (Q_NumberOfBytes <= length)

{ goto Done; // Done with that many bytes
}

Q_NumberOfBytes -= length;

else // It's a text output so format it all pretty-like

// Now figure out what to send to the output
for (unsigned long x = 0; x < length;)
{
// First get the value to print out
if (_1_BytePerValue)
{
OutputValue =
X++;

tempbuffer[x];

}
if (_2_BytePerValue)
{
if (Y_LeastSignificantByteFirst)

OutputValue = (tempbuffer[x+1l] << 8) + tempbuffer[x+0];
else
OutputValue = (tempbuffer[x+0] << 8) + tempbuffer[x+1l];
X += 2;
}
if (_4_BytePerValue)
{
if (Y_LeastSignificantByteFirst)
OutputValue = (tempbuffer[x+3] << 24) +
(tempbuffer [x+2] << 16) +
(tempbuffer[x+1] << 8) +
tempbuffer [x+0];
else
OutputValue = (tempbuffer[x+0] << 24) +
(tempbuffer[x+1] << 16) +
(tempbuffer [x+2] << 8) +
tempbuffer[x+3];
X += 4;

}

// Perform the Masking
OutputValue &= M_SignalMask;

// Perform the filtering
if ((OutputvValue & L_FilterMask) != V_FilterValue)
continue; // Not for use to save so move on.

// Now convert the value into the output text

if (A_ASCIITextValues)

{
outputstr[0] = (unsigned char)OutputValue;
outputstr[l] = 0;

}

if (D_DecimalTextValues)

{
ultoa (OutputValue, outputstr,10);
// sprintf (outputstr,"%d",OutputvValue) ;

}
if
{

(B_BinaryTextValues)

int count;

if (_1_BytePerValue)
count = 8;
if (_2_BytePerValue)
count = 16;
if (_4_BytePerValue)
count = 32;
unsigned int mask = 1 << (count - 1);
for (int z = 0; z < count; z++)

USBee DX Test Pod User’s Manual

207

if (OutputValue & mask)

outputstr(z] = '1';
else

outputstr[z] = '0';
mask /= 2;

}

}
if (H_HexTextValues)
{
if (_1_BytePerValue)
ultoa (OutputValue, outputstr, 16);
//sprintf (outputstr, "$02X", OutputValue);
if (_2_BytePerValue)
ultoa (OutputValue, outputstr, 16);
//sprintf (outputstr, "$04X", OutputValue);
if (_4_BytePerValue)
ultoa (OutputValue, outputstr, 16);
//sprintf (outputstr, "$08X", OutputValue);
}
// Now add any delimeters to the end of the value
if (C_CommaDelimited)

strcat (outputstr, ",");

if (G_SpaceDelimited)
strcat (outputstr, " ");

if (N_NewlineDelimited)
strcat (outputstr, "\n");

if (T_ForceBytesPerLine)
if (++ByteCounter >= T ForceBytesPerLine)
{
ByteCounter = 0;
strcat (outputstr, "\n");

}

if (S_Screen)
fputs (outputstr, stdout);

if (O_OutputFilename[0])
fputs (outputstr, fout);

totalbytes++;

if (Q_NumberOfBytes)

if (--Q NumberOfBytes == 0)
{ goto Done; // Done with that many bytes
}
}
}
// StopTimer () ;
if (timeout++ > 10) break; // Let up once in a while to let the 0S

process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[K ok Kk ok K KK o K Kk KK K KX K KKK K KKK KKK K KX

// Check to see if we have fallen behind too far

s

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)

208 USBee DX Test Pod User’s Manual

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

[k ok ke ok Kk ok Kk ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Give the 0S a little time to do something else
//**

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
]

// Close the file
//***‘k‘k**********‘k************************************

if (O_OutputFilename[0])
fclose (fout);

[k ok ke ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Stop the extraction process
//**

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch();

return 0;

USBee DX Test Pod User’s Manual 209

SERIAL BUS DATA EXTRACTOR

The Serial Bus Data Extractor takes the real-time streaming data from up to 8 serial data lines,
formats it and allows you to save the data to disk or process it as it arrives.

SERIAL BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. 8 digital channels

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Synchronous or Asynchronous Clocking

. Synchronous (external) clock 0 to 16MB/s*

. Asynchronous (internal) clock 1IMB/s to 24MB/s*

. Input in 1, 2 or 4 byte serial words

. Little or Big Endian

. Output to Binary File*

. Output to Text File (Hex, Decimal, Binary or ASCII)*

. Output to Screen*

° Comma, Space, or Newline Delimited files

. Output Value Filtering

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The Serial Bus Data Extractor uses any of the 8 signal lines (0 thru 7), the GND (ground) line and
optionally the CLK and TRG lines (for external timing). Connect the GND line to the digital ground of
your system.

210 USBee DX Test Pod User’s Manual

EXTRACTOR COMMAND LINE PROGRAM

The Serial Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\Serial”)

. Run the executable using the following command line arguments:

SerialExtractor [-?SADHBICGNX124YZ] [-Q NumberOfBytes] [-T
BytesPesLine] [-R SampleRate] [-E ClockingMode] [-M SignalMask] [-J
ChannelAlign] [-L Signallevel] [-V AlignmentValue] [-O filename] -P
PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)
S - Output to the screen (default off)
Q - Number of output values (default = until keypress)
1 - One Byte per value (default)

2 - Two Bytes per value

4 - Four Bytes per value

Y - Least significant bit first

Z - Most significant bit first

A - ASCIl Text Values ("1")

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

USBee DX Test Pod User’s Manual 211

B - Binary Text Values ("00110001")

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

N - Newline Delimited

X - No Delimeter

T - Force Bytes Per Line (no force default)

M - Which Signals to capture (1=signal0,255=all(default))
V - Align on Value

L - Align on Signal Level (O=low,1=high)

J - Which signal to use for alignment (1=signal0,128=signal7)

E - Clocking mode

. 2=internal (default),

° 4=CLK rising, 5-CLK falling,

. 6-CLK rising AND TRG high, 7-CLK falling AND TRG high
. 8-CLK rising AND TRG low, 9-CLK falling AND TRG low

R - Internal CLK Sample Rate (1Msps default)

. 247 = 24MHz
. 167 = 16MHz
. 127 =12MHz

. 87 = 8MHz
. 67 = 6MHz
. 47 = 4MHz
. 37 =3MHz

. 27 =2MHz
. 17 = 1MHz (default)

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

212 USBee DX Test Pod User’s Manual

DLL FILENAME:

usbedSerial.dll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream

so far and are available to read using GetNextData.
CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0— No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV API StartExtraction(unsigned int SampleRate,
unsigned long PodNumber, unsigned int ClockMode, unsigned long
AlignValue, unsigned char SignallLevel, unsigned char AlignChannel,
unsigned char BytePerValue);

SampleRate:

. 17 = 1Msps
. 27 = 2Msps
. 37 =3Msps
. 47 = 4Msps
. 67 = 6Msps
. 87 = 8Msps
. 127 = 12Msps

USBee DX Test Pod User’s Manual

213

. 167 = 16Msps
. 247 = 24Msps

PodNumber: Pod ID on the back of the USBee DX Test Pod

ClockMode:

. 2 = Internal Timing as in SampleRate parameter

. 4 — External Timing — sample on rising edge of CLK

. 5 — External Timing — sample on falling edge of CLK

. 6 — External Timing — sample on rising edge of CLK and TRG high
. 7 — External Timing — sample on falling edge of CLK and TRG high
. 8 — External Timing — sample on rising edge of CLK and TRG low
. 9 — External Timing — sample on falling edge of CLK and TRG low

AlignValue: Value which the extractor syncs with to define bit 0 alignment.
SignalLevel: Level, 0 or 1, which the extractor syncs with to define bit 0 aligment
AlignChannel: Which signal the extractor uses for alignment, either via value or signal
BytesPerValue: 1, 2, or 4. Used for Value alignment size.

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions
CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);

Return:

. 0— No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

214 USBee DX Test Pod User’s Manual

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places

these bytes into the buffer pointed to by the *buffer parameter.

The Serial Bus Extractor uses the following format for the data in this buffer:

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

Byte

W oo Joy Ul WN BEF O

=z

Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel

Channel

first
first
first
first
first
first
first
first

second byte extracted
second byte extracted

mod 8),

USBee DX Test Pod User’s Manual

byte
byte
byte
byte
byte
byte
byte
byte

byte

extracted
extracted
extracted
extracted
extracted
extracted
extracted
extracted

(N/8)+1 extracted

215

|EXAMPLE SOURCE CODE

[KKK K Kk K K ko Kk KK Kok Kk Kk K Kk Kk Kk Rk KKk KK Kk K Rk Kk K

// USBee DX Data Extractor
// Serial Bus Extractor Example Program
// Copyright 2006, CWAV All Rights Reserved.

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok Kk

"stdafx.h"
"stdio.h"
"conio.h"
"windows.h"
<fentl.h>
<io.h>
<stdlib.h>
<stdio.h>

#include
#include
#include
#include
#include
#include
#include
#include

#define MAJOR_REV 1
#define MINOR_REV 0

][] K K o K KK K KK K KKK K KKK K KKK K XK KK KKK KKK KKK R K KX

// Declare the Extractor DLL API routines

[k o ok ke ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned int SampleRate, unsigned long PodNumber,
unsigned int ClockMode, unsigned long AlignValue,

unsigned char SignalLevel, unsigned char
AlignChannel, unsigned char BytePerValue);

CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);

CWAV_IMPORT
CWAV_IMPORT
CWAV_IMPORT

int CWAVﬁXPI StopExtraction(void);
char CWAV_API ExtractBufferOverflow(void);
unsigned long CWAV_API ExtractionBufferCount (void);

[K o K Kk o K KK K KKK K KKK K KKK K K XK K KKK K KKK R K KX

// Define the working buffer

[k o ok ok e ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kok ok ok Kk

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings

unsigned long P_PodID = 0;
unsigned char O OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;
unsigned char BytePerValue = 1;
unsigned char Y LeastSignificantByteFirst = FALSE;
unsigned char Z MostSignificantByteFirst = TRUE;
unsigned char A_ASCIITextValues = FALSE;
unsigned char D DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;
unsigned char B_BinaryTextValues = FALSE;
unsigned char I_BinaryValues = FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = TRUE;
unsigned char N_NewlineDelimited = FALSE;
unsigned char X _NoDelimeter = FALSE;
unsigned long T_ForceBytesPerLine = 0;
unsigned long M _SignalMask = OxFFFFFFFF;
unsigned char L_SignallLevel = 0;
unsigned long V_AlignvValue = 0;
unsigned char E_ExternalClockMode = 2;
unsigned char J_ChannelAlign = 0;
unsigned char R_SampleRate = 17;
unsigned long Q NumberOfBytes = 0;
void DisplayHelp (void)
{

fprintf (stdout, "\nSerialExtractor [-?SADHBICGNX124YZ] [-Q NumberOfBytes] [-T

BytesPesLine] [-R SampleRate] [-E ClockingMode] [-M SignalMask] [-J ChannelAlign] [-L
SignallLevel] [-V AlignmentValue] [-O filename] -P PodID\n\n");
fprintf (stdout, " ? - Display this help screen\n");

USBee DX Pod to Use\n");
- Pod ID (required)\n");

fprintf (stdout, "\n
fprintf (stdout, " P

fprintf (stdout,"\n Output Location Flags\n");

216 USBee DX Test Pod User’s Manual

fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

TRG high\n");

fprintf (stdout, "

low\n") ;

void

fprintf (stdout, "
fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

exit (0);

Error (char *err)

O - Output to filename (default off)\n");
S - Output to the screen (default off)\n");

When to Quit Flags\n");

Q - Number of output values (default = until keypress)\n");

Input Number Format Flags\n");

- One Byte per value (default)\n");
- Two Bytes per value\n");

- Four Bytes per value\n");

- Least significant byte first\n");

- Most significant byte first\n");

NS N

Output Number Format Flags\n");

A - ASCII Text Values (\"1\")\n");

- Decimal Text Values (\"49\")\n");

- Hex Text Values (\"31\") default\n");
- Binary Text Values (\"00110001\")\n");
Binary Values (49)\n");

Comma Delimited\n");

Space Delimited (default)\n");

- Newline Delimited\n");

- No Delimeter\n");

Force Bytes Per Line (no force default)\n");

HXZOOQHWTo
|

Filter Values\n");

M - Which Signals to capture (l=signal0,255=all(default))\n");

Clocking Modes\n");
E - Clocking mode (2=internal (default),\n");

4=CLK rising,5-CLK falling,\n");

6-CLK rising AND TRG high,7-CLK falling AND

8-CLK rising AND TRG low, 9-CLK falling AND TRG

R - Internal CLK Sample Rate (1Msps default)\n");

Bit Zero Alignment Setting\n");
V - Align on Value\n");
L - Align on Signal Level (0O=Low, 1=High)\n");

J - Align on Which Channel (1=Ch 0, 128=Ch 7)\n");

fprintf (stderr, "Error: ");
fprintf (stderr, "$s\n",err);

exit(2);

R

// Parse all of the command line options
//**

void ParseCommandLine (int argc, char *argv[])

{

in a

BOOL cont;

int i,3;
DWORD WordExample;
BYTE ByteExample;

for(i=1; i < argc;
{
if ((argv[i] [0]
{

++1)

== "'=') || (argv[i][0] == '/"))

cont = TRUE;

for(j=1l;argv[i] [J] && cont;++3)

single argv (like -AR)
switch (toupper (argv[i] [§]1))

{

case 'P':
P PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case '0O':

strcpy ((char*)O_OutputFilename, argv[++i]);
cont = FALSE;
break;

USBee DX Test Pod User’s Manual

// Cont flag permits multiple commands

217

case '?2':
DisplayHelp () ;
break;
case 'S':
S_Screen = TRUE;
break;
case '1':
BytePerValue = 1;
break;
case '2':
BytePerValue = 2;
break;
case '4':
BytePerValue = 4;
break;
case 'Y':
Y LeastSignificantByteFirst = TRUE;
Z_MostSignificantByteFirst = FALSE;
break;
case 'Z':
Z_MostSignificantByteFirst = TRUE;
Y LeastSignificantByteFirst = FALSE;
break;
case 'A':
A ASCIITextValues = TRUE;
H_HexTextValues = FALSE;
break;
case 'D':
D _DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;
case 'H':
H_HexTextValues = TRUE;
break;
case 'B':
B_BinaryTextValues = TRUE;
H_HexTextValues = FALSE;
break;
case 'I':
I_BinaryValues = TRUE;
H_HexTextValues = FALSE;
break;
case 'C':
C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;
case 'G':
G_SpaceDelimited = TRUE;
break;
case 'N':
N_NewlineDelimited = TRUE;
G_SpaceDelimited = FALSE;
break;
case 'X':
X_NoDelimeter = TRUE;
G_SpaceDelimited = FALSE;
break;
case 'T':
T_ForceBytesPerLine = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'Q':
Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'M':
M SignalMask = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'L':
L_Signallevel = (BYTE)strtol(argv[++i],NULL,0);
cont = FALSE;
break;
case 'V':
V_AlignValue = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'E':
E_ExternalClockMode = (DWORD)strtol (argv([++i],NULL,0);
cont = FALSE;

218 USBee DX Test Pod User’s Manual

break;

case 'J':
J_ChannelAlign = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'R':
R_SampleRate = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'w':
WordExample = (DWORD)strtol (axrgv[++i],NULL,0);
cont = FALSE;
break;

case 'b':
ByteExample = (BYTE)strtol(argv[++i],NULL,0);
cont = FALSE;
break;

default:
DisplayHelp () ;

Error ("Invalid Command Line Switch");

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

}
unsigned long StartTime;

void StartTimer ()
{

StartTime = GetTickCount();
}

void StopTimer ()
{

printf (" \nTime Delta = %d\n",GetTickCount() - StartTime);

}

K K o K Kk o KKK o K KKK K KKK K KKK K K XK K KKK K KKK K KX

// Main Entry Point. The program starts here.
[KRRk Kk ko ko kK kK kK R Kk ko kK kK ok Kk Kk ko kK kKR Kk Kk kK Kk Kk K

int main(int argc, char* argvl[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

;

printf ("DX Data Extractor\n");
printf("Serial Bus Extractor Version %d.%d\n", MAJOR REV, MINOR REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[K o K Kk ok K KK o K KK KKK K K KKK K K XK K KKK KKK K KK

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0_OutputFilename, "w");

USBee DX Test Pod User’s Manual 219

]k ok ke ok Kk ok Kk ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Start the DX Pod extracting the data we want
//**

RetValue = StartExtraction(R SampleRate, P_PodID, E_ExternalClockMode, V_AlignValue,
L_SignalLevel, J_ChannelAlign, BytePerValue);

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n");
printf ("Press any key to continue...");
getch();
return(0) ;
}

printf ("Processing and Saving Data to Disk.\n");

][k o ok ok ok Kk ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Loop and do something with the collected data
//**

int KeepLooping = TRUE;
printf ("BytePerValue = %d, M _SignalMask = %d\n",BytePerValue, M_SignalMask);

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction(); // Stop the streaming of data from the USBee

}

[KRR K K K KK KKK K K KKK KKK K K K KK KKK K K K KK kKR K
// I1f there is data that has come in
//**
int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{

if (length > WORKING_BUFFER SIZE)

length = WORKING_ BUFFER_SIZE;

[k o ok ok o ok Kok o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Get the data into our local working buffer
] KRR Kk Kk ko ko kK kK kK Kk ko kK kKK Kk Kk kK kK kK kKR Kk K kK kK kK

StartTimer () ;
GetNextData (tempbuffer, length);

if (I_BinaryValues) // Just write out the binary data to a file

{
totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (Q_NumberOfBytes)

{
if (Q_NumberOfBytes <= length)
{

goto Done; // Done with that many bytes
}
Q NumberOfBytes -= length;
}
}
else // It's a text output so format it all pretty-like

// Now figure out what to send to the output
for (unsigned long x = 0; x < length; x+=(8 * BytePerValue))
//Do multiple of 8 values at a time becuase each one is a data line
{
sprintf (outputstr, "\n%08X: ",x);
fputs (outputstr, fout);
//First, check which lines we want
for (unsigned char y = 0; y < 8; y++)
{
sprintf (outputstr, "%$02X ",tempbuffer[x+y]);

220 USBee DX Test Pod User’s Manual

tempbuffer [x+0+y];

tempbuffer [x+8+y];

fputs (outputstr, fout);

if (M_SignalMask & (2"y)) //Check mask value
{
// First get the value to print out
if (BytePerValue == 1)
{
OutputValue = tempbuffer([x + y];
}
if (BytePerValue == 2)
{
if (Y LeastSignificantByteFirst)
OutputValue = (tempbuffer[x+8+y] << 8) +

else
OutputValue = (tempbuffer[x+0+y] << 8) +

}
if (BytePerValue == 4)
{
if (Y_LeastSignificantByteFirst)
OutputValue = (tempbuffer[x+32+y] << 24)
(tempbuffer [x+16+y] <<

+

16)

(tempbuffer [x+8+y] << 8) +

tempbuffer [x+0+y];
else
OutputValue = (tempbuffer[x+0+y] << 24) +

(tempbuffer [x+8+y] << 16

(tempbuffer [x+16+y] <<
tempbuffer [x+32+y];
}

// Now convert the value into the output text
if (A_ASCIITextValues)
{
outputstr[0] = (unsigned char)OutputValue;
outputstr[l] = 0;

if (D_DecimalTextValues)
{
ultoa (OutputValue, outputstr,10);
// sprintf (outputstr, "%d",OutputValue) ;

if (B_BinaryTextValues)
{

int count;

if (BytePerValue == 1)
count = 8;

if (BytePerValue == 2)
count = 16;

if (BytePerValue == 4)
count = 32;

unsigned int mask = 1 << (count - 1);
for (int z = 0; z < count; z++)
{

if (OutputValue & mask)

outputstr(z] = '1';
else

outputstr[z] = '0';
mask /= 2;

}
}
if (H_HexTextValues)
{
if (BytePerValue == 1)
ultoa (OutputvValue, outputstr, 16);
//sprintf (outputstr, "$02X", OutputValue);
if (BytePerValue == 2)
ultoa (OutputvValue, outputstr, 16);
//sprintf (outputstr, "$04X", OutputValue);
if (BytePerValue == 4)
ultoa (OutputvValue, outputstr, 16);
//sprintf (outputstr, "$08X", OutputValue);

USBee DX Test Pod User’s Manual

8

221

// Now add any delimeters to the end of the value
if (C_CommaDelimited)
strcat (outputstr, ",");

if (G_SpaceDelimited)
strcat (outputstr, " ");

if (N_NewlineDelimited)
strcat (outputstr, "\n");

if (T_ForceBytesPerLine)
{
if (++ByteCounter >= T_ForceBytesPerLine)
{
ByteCounter = 0;
strcat (outputstr, "\n");

}

if (S_Screen)
fputs (outputstr, stdout);

if (O_OutputFilename[0])
fputs (outputstr, fout);

totalbytes++;

if (Q_NumberOfBytes)

if (--Q_NumberOfBytes == 0)
{
goto Done; // Done with that many
bytes
}
}
}
}
}
// StopTimer () ;
if (timeout++ > 10) break; // Let up once in a while to let the OS
process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[K ok K Kk o KKK o K KKK K KKK K K XK K K XK KK K XK K KKK K KK

// Check to see if we have fallen behind too far
[] KRR Kk Kk ko ko kK kK kK Kk ko kK kK kK Kk K kK kKR KR Kk kK Kk Kk K

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{
printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

[KKK Kk kK ko K KK Kk Kk Kk K Kk KK Kk K K KK o Kk K Kk ok Kk

// Give the 0S a little time to do something else
[] KRR Kk Kk Kk ko kK kKR Kk K kK KKk Kk Kk Kk kK kKR K Kk kK kK kK kK

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

222 USBee DX Test Pod User’s Manual

]k ok ok ok Kk ok Kk ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Close the file

KK Kk ok K KK o K KK K KKK K K KKK K K XK KK K KKK KK XK KKK XK KKK KX

if (O_OutputFilename[0])
fclose (fout) ;

[k ok ok ok Kk ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Stop the extraction process
R R A R L R R T ST

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch();

return 0;

USBee DX Test Pod User’s Manual 223

12C DATA EXTRACTOR

The I°C Bus Data Extractor takes the real-time streaming data from the 12C bus, formats it and allows
you to save the data to disk or process it as it arrives.

12C DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one I°C Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Time Stamp for each packet

. Output to Text File*

. Output to Screen*

. Comma or Space Delimited files

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The I°C Bus Data Extractor connects to the SDA and SCL lines of the I°C bus. Use one signal as the SDA
data line and one signal as the SCL clock line. Also connect the GND line to the digital ground of your
system. Connect these signals to the I°C bus using the test clips provided.

EXTRACTOR COMMAND LINE PROGRAM

The I°C Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

224 USBee DX Test Pod User’s Manual

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\I2C")

. Run the executable using the following command line arguments:

I2CExtractor [-?SDHICGAB] [-Q NumberOfBytes] [-V Timestamp] [-O
filename] [-M SDA] [-N SCL] -P PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)
M - SDA signal Mask (1-Ch0, 128=Ch7, Ch0 default)
N - SCL signal Mask (1-Ch0, 128=Ch7, Ch1 default)
A - All Packet Fields are output (default)

B — Only Data Bytes are output

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

V - Timestamps (0=off, 1=each packet start)

USBee DX Test Pod User’s Manual 225

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

DLL FILENAME:

usbedI2C.dll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned long PodNumber,
unsigned char All, unsigned char Decimal, unsigned char Hex,
unsigned char Binary, unsigned char Comma, unsigned char Space,
unsigned char Timestamps, unsigned long SDAMask, unsigned long
SCLMask)

PodNumber: Pod ID on the back of the USBee DX Test Pod

226 USBee DX Test Pod User’s Manual

All:

. 0 — Only the data payload bytes are returned
. 1 - All 12C packet fields are returned

Decimal:

. 1 — Decimal Values (text) are output for the data bytes

Hex:

. 1 - Hex Values (text) are output for the data bytes
Binary:

. 1 - All data is in binary form, not text
Comma:

. 1 - Commas are placed between each field/data byte
Space:

. 1 —Spaces are placed between each field/data byte
Timestamp:

. 1 - Print Timestamps at the start of each packet
SDAMask:

. The mask for the channel to use for SDA

e (1=Cho, 128 =Ch7)
SCLMask:

. The mask for the channel to use for SCL

. (1=Cho, 128 = Ch7)
Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

USBee DX Test Pod User’s Manual 227

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV_API StopExtraction(void);
Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);
Return:
. 0— No overflow

. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The I°C Bus Extractor DLL sends the extracted data through the *buffer in the requested form based
on the parameters in the StartExtraction call. For example, if Binary is set to a 0, then the *buffer will
receive the binary bytes that make up the data stream. If Hex is set to a 1, the *buffer will contain a
text string which is the data of the 12C traffic in Hex text form, separated by any specified delimiters.

I2CExtractor -0 output.dex -P 3209 -Q 5000 -H -C -M 2 -N 1 -V O

¥ - C:\Program Files'USBee AX-Pro Data Extractors'output.dex o | Ellﬂ

Eile Edit Vew Favorites UserCommands Gridlines Tools Help,
Ol@| dlele] sl &7 |wlse]e| [£ 2 EE 1| &2

‘123456?89|123456789|123456789|123456?89‘123456?89|123456789|123456789|123456789‘123456?B9|12
[S] &l ,Read ACK 11 NACK [S] AD,Write ACK 00,ACE [S] &1, Read ACK FF,HACK [P]

. [S] &1.Read ACK 11.NACK [S] A0.Write ACK 00 ACK [S] A1.Read ACK FF.NACK [F]

: A1 Read ACK 11.WACK [S] A0.Write ACK 00.ACK [S] Al Read ACK FF.NACK [P]

© [5] &1.Read ACK 11.NWACK [S] AD.Write ACE 00 ACE [S] 1.Read &CK FF.NACK [P]

© [S] &1,Read ACK 11.NACK [S] AD.Write ACE 00 ACK [S] &1.Read &CK FF,HACK [P]

. [S] &1.Read ACK 11.NACK [S] A0.Write ACK 00 ACK [S] 21.Read aCK FF,NACK [P]

T UT i 6 N
o

Lines 1 taé 100% [File: Size: 462 bytes (6 lnes) [07/17/2006 19:46] v

228 USBee DX Test Pod User’s Manual

I2CExtractor -O output.dex -P 3209 -Q 5000 -H -G -M 2 -N 1 -V 1

! =lolx|
File Edit Wiew Favorites UserCommands Gridlines Tools Help.
ole| Alu]E] &% (sl Mo | 25 Bl=| | mo|@] *] B i
|123456789|123456789|123456789|123456?89|123456789|123456?89|123456789|123456789|123456789|123
1. 0000001727 [5] &1 Eead ACK 11 HACK [S] A0 Write ACK 00 ACK [S] &1 Read ACK FF NACK [F]
2. 0000002472 [S] Al Read ACK 11 NACK [S] A0 Write ACK 00 ACK [S] i1 Read ACK FF NACK [F]
3. 0000003109 [S] A1 Eead ACK 11 HACK [S] A0 Write ACK 00 ACK [S] &1 Read ACK FF NACK [F]
4. 0000003669 [S] Al Read ACK 11 WACK [S] A0 Write ACK 00 ACK [S] i1 Read ACK FF NACK [F]
5. 0000004220 [S] 41 Eead ACK 11 HACK [S] A0 Write ACK 00 ACK [S] &1 Read ACK FF NACK [F]
£ 0000004799 [S] Al Read ACK 11 NACK [S] A0 Write ACK 00 ACK [S] i1 Read ACK FF NACK [F]
7. 0000005302 [S] 41 BEead ACK 11 HACK [S] A0 Write ACK 00 ACK [S] &1 Read ACK FF NACK [F]
4. 0000005871 [S] A1 Read ACK 11 HACK [S] A0 Write ACKE 00 ACK [S] &1 Read ACK FF NACK [FP]
9. 0000006450 [S] A1 Eead ACK 11 HACK [S] A0 Write ACK 00 ACKE [S] &1 Read ACK FF NACK [F]
10: 0000007009 [S] Al Read ACK 11 KACK [S] A0 Write ACE 00 ACK [S] &1 Read ACK FF NACK [P]
\Linesltu 10 100%: |Fi|s Size: 880 bytes (10 lines) [O7/17/2006 19:47] v

I2CExtractor -O output.dex -P 3209 -Q 5000 -B -M 2 -N 1

\USBee AX-Pro Data Extractors'output.dex - EI|1|

= E N R E S e | &l Sl=|aE e < 88

| 1] | 10 ‘ 20 | 30 | 40 | 50 ‘ 60 | 70 | 80 |
123456789 |123456%089 123406789 123456789 /123456789|123456769 123406789 |123456789 /1234567897
1: ALl 11 A0 00 &1 FF A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF Al 11 AD 00 A1 FF Al 11 A0 00

41 FF 21 11 &0 00 41 FF &1 11 A0 00 A1 FF A1 11 &0 00 41 FF 41 11 &0 00 &1 FF 41 11

AD 00 A1 FF &1 11 A0 00 A1 FF &1 11 A0 00 A1 FF A1 11 AD 00 Al FF

File Edit Miew Favorites UserCommands Gridlines Tools Help,

|L|nes 1ta3 100%: \Flle Size: 234 bytes {3linesy [07f17/2006 19:49] v

I2CExtractor -0 output.dex -P 3209 -Q 5000 -I -M 2 -N 1

File Edit Wiew Favorites UserCommands Gridlines Tools Help.

olel = lIlIlI_I»?IaImlcolal = =

oo 05 08 09 04 0B 0OC 0D OE OF 0123456789ABCDER
0o0ooooo Al 11 AD DD Al FF Al 11 A0 00 A1 FF A1 11 AD 00 [P B2 I &~ R N
oo00ooio Al FF A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 [2 N & =
go0000z0 A0 00 A1 FF 41 11 A0 00 A1 FF A1 11 A0 00 Al FF RE AR LS I 4
00000020 A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 [A I b4
go0o0oo40 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 [N I " I & I
oo000050 A0 00 A1 FF 41 11 A0 00 A1 FF A1 11 A0 00 Al FF RS- R L R 4
00000060 A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF AL 11 AD 00 [P B I ..
goooooYo AL FF AL 11 AD 00 A1 FF A1 11 AD 00 AL FF A1 11 Iyl. R b
00000020 A0 OO0 A1 FF 41 11 A0 00 A1 FF A1 11 A0 00 Al FF RS- R L R
goooooso A1 11 A0 00 A1 FF A1 11 &40 00 Al FF A1 11 A0 00 (I - IV .- I
goooooa0 A1 FF AL 11 A0 00 Al FF 41 11 A0 00 A1 FF Al 11 P¥i. Qi v
0o0000ED A0 OO0 A1 FF A1 11 AOQ 00 41 FF A1 11 A0 00 Al FF B~ I - B
goooooco A1 11 A0 00 A1 FF A1 11 &40 00 Al FF A1 11 A0 00 (I - IV .- I
oooooopo Al FF AL 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 ivi i iFi
000000ED A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 Al FF RS- AR L~ S I 4
000000FD A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 AD 00 [P B2 I &~ R
gooooioo Al FF A1 11 AD 00 A1 FF A1 11 A0 00 A1 FF A1 11 [A A N &
go000iio A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 Al FF RE AR LS I 4
oo0o0oizo A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 [P B I &
00000130 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 [N I " I & I -
go000i40 A0 00 A1 FF 41 11 A0 00 A1 FF A1 11 A0 00 Al FF iy
00000150 A1 11 A0 00 A1 FF A1 11 A0 00 A1 FF A1 11 A0 00 i . ;I

4

|Lines 1tn 22 955 |Fi\e Size: 354 bytes (23lines) [07/17/2006 19:55]

USBee DX Test Pod User’s Manual 229

EXAMPLE SOURCE CODE

[KKK K Kk K K ko Kk KK Kok Kk Kk K Kk Kk Kk Rk KKk KK Kk K Rk Kk K

// USBee DX Data Extractor
// I2C Bus Extractor Example Program
// Copyright 2006, CWAV All Rights Reserved.

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok Kk

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR_REV 0

//**
// Declare the Extractor DLL API routines

[k o ok ke ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned long PodNumber, unsigned char All,
unsigned char Decimal, unsigned char Hex, unsigned char Binary, unsigned char Comma,
unsigned char Space, unsigned char Timestamps, unsigned long SDA,unsigned long SCL);
CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
CWAV_IMPORT int CWAV_API StopExtraction(void);

CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);

CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

][ok o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok K Kok ok ok Kk

// Define the working buffer

[ok o ok ok e ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok K Kok ok ok Kk

#define WORKING_BUFFER SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O_OutputFilename([256] = {0};
unsigned char S_Screen = FALSE;

unsigned char A_All = TRUE;

unsigned char B_DataOnly = FALSE;

unsigned char D DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;
unsigned char I_BinaryValues = FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = FALSE;
unsigned long Q NumberOfBytes = 0;
unsigned long V_Timestamps = TRUE;
unsigned long M _SDA = 1;

unsigned long N_SCL = 2;

void DisplayHelp (void)
{

fprintf (stdout, "\nI2CExtractor [-?SDHICGAB] [-Q NumberOfBytes] [-V Timestamp] [-O
filename] [-M SDAMask] [-N SCLMask] -P PodID\n");
fprintf (stdout, "\n ? - Display this help screen\n");

fprintf (stdout,"\n USBee DX Pod to Use\n");
fprintf (stdout, " P - Pod ID (required)\n");
fprintf (stdout,"\n Output Location Flags\n");

fprintf (stdout, " O - Output to filename (default off)\n");
fprintf (stdout," S - Output to the screen (default off)\n");

fprintf (stdout,"\n When to Quit Flags\n");

fprintf (stdout, " Q - Number of output values (default = until keypress)\n");

230 USBee DX Test Pod User’s Manual

fprintf (stdout, "\n

fprintf (stdout, "

fprintf (stdout, "\n

fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

void Error (char *err)

fprintf (stderr, "Error:

R -

ZER<OOQ+HTUwR
|

Input Format Flags\n");

Bus Speed in bits/second (default = 250000)\n");

Output Number Format Flags\n");

All Packet Fields are output (default)\n");
Only data bytes are output\n");

Decimal Text Values (\"49\")\n");

Hex Text Values (\"31\") default\n");

Binary Values (49)\n");

Comma Delimited\n");

Space Delimited (default)\n");

Timestamps (0=off (default),l=Timestamp on\n");
SDA signal (l=ch0, 128=ch7, ch0 default)\n");
SCL signal (1=ch0, 128=ch7, chl default)\n");

")

fprintf (stderr, "$s\n",err);

exit (2);

[K o K Kk o K KK K KKK K KKK K KKK K K KKK K XK KKK KKK R K KX

// Parse all of the command line options
R R S R R S

void ParseCommandLine (int argc, char *argv[])

{
BOOL cont;
int i,3;

DWORD WordExample;

BYTE ByteExample;

for(i=1; i < argc; ++i)

{

if ((argv[i] [0) == '=') || (argv[i][0] == '/")
{
cont = TRUE;
for(j=l;argv[i] [J] && cont;++3) // Cont flag permits multiple commands

in a single argv (like -AR)
switch (toupper (argv[i] [§]1))

{

USBee DX Test Pod User’s

case

case

case

case

case

case

case

case

case

Tpr.
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;

break;

ot

strcpy ((char*)0_OutputFilename, argv[++i]);
cont = FALSE;

break;

"2

DisplayHelp () ;

exit (0);

break;

'St

S_Screen = TRUE;

break;

'A':

A All = TRUE;
B_DataOnly = FALSE;
break;

'B':

A All = FALSE;
B_DataOnly = TRUE;
break;

'D':

D DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

'H':

H_HexTextValues = TRUE;
break;

"I

Manual

231

I_BinaryValues = TRUE;
H HexTextValues = FALSE;
break;

case 'C':
C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;

break;
case 'G':
G_SpaceDelimited = TRUE;
break;
case 'Q':
Q_ NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'V':
V_Timestamps = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'M':

M_SDA = (DWORD)strtol (argv([++i],NULL,0);
cont = FALSE;

break;
case 'N':
N_SCL = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
default:
DisplayHelp () ;

fprintf (stdout, "\nCommand line switch %c not
recognized\n", toupper (argv[i] [j]));

Error ("Invalid Command Line Switch");

exit (0);

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

[K ok K Kk o K KK o K KK K KKK K KKK K K XK KK KKK K KKK K KX

// Main Entry Point. The program starts here.
[] KRRk Kk ko ko kK kK kK Rk ko kK kK ok Kk Kk K kK kKR Kk Kk kK Kk Kk K

int main(int argc, char* argv[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

;

printf ("DX Data Extractor\n");
printf ("I2C Bus Extractor Version %d.%d\n", MAJOR REV, MINOR REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[ok kK ok K KK o KK KK KKK K KKK K K XK KKK KX

// Open up a file to store extracted data into
//**

FILE *fout;

if (O_OutputFilename[0])
{

232 USBee DX Test Pod User’s Manual

if (I_BinaryValues)

fout = fopen((char*)0_OutputFilename, "wb");
else

fout = fopen((char*)0_OutputFilename, "w");

}

]k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Start the DX Pod extracting the data we want
//***‘k‘k**********‘k************************************

int Endpoint = 999;
int Device = 999;

RetValue = StartExtraction(P_PodID, A_All, D DecimalTextValues, H_ HexTextValues,

I_BinaryValues, C_CommaDelimited, G_SpaceDelimited, V_Timestamps, M_SDA, N_SCL) ;

if (Retvalue == 0)

{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber

correct?\n") ;

printf ("Press any key to continue...");
getch();
return (0) ;

[K o K KK o K KKK K KKK K KKK K KKK KK K XK K KKK K KKK KK KX

// Loop and do something with the collected data

] ok o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok ok Kk

char 0l1dSignal = 99;

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction() ; // Stop the streaming of data from the USBee

}

//**
// If there is data that has come in
//**
int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{

if (length > WORKING_BUFFER SIZE)

length = WORKING_BUFFER _SIZE;

[K ok K Kk o KKK K K KKK K KKK K K XK K K XK K K XK R KKK K KX

// Get the data into our local working buffer

s

GetNextData (tempbuffer, length);
totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q_NumberOfBytes)

{
if (Q_NumberOfBytes <= length)
{
goto Done; // Done with that many bytes
}
Q_NumberOfBytes -= length;
}

if (timeout++ > 3) break; // Let up once in a while to let the OS process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

USBee DX Test Pod User’s Manual

233

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K K ok ok Kk

// Check to see if we have fallen behind too far
//**

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for

your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)

{
printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for

your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

][k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok o Kk ok ok ok K Kok ok ok Kk

// Give the 0S a little time to do something else
//**

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[k o ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ko ok Kk

// Close the file

Kk o K Kk o K KKK K KKK K KKK K KKK K K XK K XK KK K KKK KK KX

if (O_OutputFilename[0])
fclose (fout) ;

][k o ok ke ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok Kk

// Stop the extraction process
//**

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch();

return 0;

234 USBee DX Test Pod User’s Manual

SM BUS DATA EXTRACTOR

The SM Bus Data Extractor takes the real-time streaming data from the SM bus, formats it and allows
you to save the data to disk or process it as it arrives.

SM BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one SM Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Time Stamp for each packet

. Output to Text File*

. Output to Screen*

. Comma or Space Delimited files

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The SM Bus Data Extractor connects to the SMBClk and SMBData lines of the SM Bus. Use one signal
as the SMBData line and one signal as the SMBCIk line. Also connect the GND line to the digital
ground of your system. Connect these signals to the SM Bus using the test clips provided.

EXTRACTOR COMMAND LINE PROGRAM

The SM Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

USBee DX Test Pod User’s Manual 235

To run the Data Extractor:

. Install the USBee DX software on your PC
. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port
. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,

Command Prompt.

. Change the working directory to the Data Extractor directory
. (“cd \program files\USBee Data Extractor\SMBus”)
. Run the executable using the following command line arguments:

SMBusExtractor [-?SDHICGAB] [-Q NumberOfBytes] [-V Timestamp] [-O

filename] [-M SMBDatMask] [-N SMBClkMask]

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)

M - SMBData signal Mask (1-Ch0, 128=Ch7, Ch0 default)

N - SMBClk signal Mask (1-Ch0, 128=Ch7, Ch1 default)

A - All Packet Fields are output (default)

B — Only Data Bytes are output

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

V - Timestamps (0=off, 1=each packet start)

236

-P PodID

USBee DX Test Pod User’s Manual

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL

and drivers. This DLL can be called using any software language that supports calls to DLLs. Below

are the details of this DLL interface and the routines that are available for your use.

DLL FILENAME:

usbedSMBus.dll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream

so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned long PodNumber,

unsigned char All, uHsigned char Decimal, unsigned char Hex,

unsigned char Binary, unsigned char Comma, unsigned char Space,
unsigned char Timestamps, unsigned long SMBData, unsigned long

SMBC1k) ;

PodNumber: Pod ID on the back of the USBee DX Test Pod

USBee DX Test Pod User’s Manual

237

All:

. 0 — Only the data payload bytes are returned
. 1 — All SMBus packet fields are returned

Decimal:

. 1 — Decimal Values (text) are output for the data bytes

Hex:

. 1 - Hex Values (text) are output for the data bytes
Binary:

. 1 - All data is in binary form, not text
Comma:

. 1 - Commas are placed between each field/data byte
Space:

. 1 —Spaces are placed between each field/data byte
Timestamp:

. 1 - Print Timestamps at the start of each packet
SMBData:

. The mask for the channel to use for Data

e (1=Cho, 128 =Ch7)
SMDClk:

. The mask for the channel to use for Clk

. (1=Cho, 128 = Ch7)
Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

238 USBee DX Test Pod User’s Manual

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);
Return:
. 0— No overflow

. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The SM Bus Extractor DLL sends the extracted data through the *buffer in the requested form based
on the parameters in the StartExtraction call. For example, if Binary is set to a 0, then the *buffer will
receive the binary bytes that make up the data stream. If Hex is set to a 1, the *buffer will contain a
text string which is the data of the SMBus traffic in Hex text form, separated by any specified
delimiters.

USBee DX Test Pod User’s Manual 239

File Edit Wew Favortes UserCommands Gridines Tools Help.

Qe g #4| &] % |Caa|so| 2

= flv | &lS Slw|limim|a x| 88 il2]

o
|1234567E9|1

10 ‘ 20 ‘ 3n | 40 | 50 ‘ 60 ‘ 70 | a0 | 90
G6789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 1234567

A4l Read 46 NACK [S] AD Write 00 [S] A1 Read 31 FACK [F] -

3
1. 0000001832 [S
2. 0000054106 [S] &0 Write 00 11 [P]
3. 0000054106 [S] A0 Write NACK [P
4 0000054106 [S] &0 Write NACK [P
5. 0000054106 [S] A0 Write NACK [P
6. 0000054106 [S] A0 Write NACK [P
7. 0000054107 [S] A0 Write NACK [P
2. 0000054107 [S] A0 Write NACK [P
9. 0000054107 [S] A0 Write WACK [P
10 0000054107 [S] A0 Write NACK [P
11 0000054107 [S] &0 Write NACK [P
12: 0000054107 [S] A0 Write NACK [P
13: 0000054107 [S] A0 Write NACK [P
14 0000054107 [S] A0 Write NACK [P
15 00000541038 [S] 40 Write NACK [P
16 0000054108 [S] A0 Write [F]
17 0000054108 [S5] A0 Write 01 22 [F]
18 0000054108 [S] A0 Write NACK [P
19: 0000054108 [S] A0 Write NACK [P
20 0000054109 [S] A0 Write NACK [P
21: 0000054109 [S] A0 Write NACK [P
22, 0000054109 [S] A0 Write MACK [P
230000054109 [S] &0 Write NACK [P
240000054109 [S] A0 Write NACK [P
25 0000054109 [S] A0 Write NACK [P
260 0000054108 [S] A0 Writs NACK [P
27. 0000054110 [S] A0 Write NACK [P
22 0000054110 [S] A0 Write MACK [P
29, 0000054110 [S] 40 Write NACK [P
200 0000054110 [S] A0 Write NACK [P
31 0000054110 [S] A0 Write [FP]
32 0000054110 [S] A0 Write 02 33 [P]
33 0000054111 [S] A0 Write NACK [P
3J4: 0000054111 [S] A0 Write NACK [P
2L 0000054111 [S] A0 Write MACK [P
6. 0000054111 [S] A0 Write NACK [P
7. 0000054111 [S] A0 Write MACK [P
38 0000054111 [S] A0 Write MACK [P
39 0000054111 [S] A0 Write NACK [P
40 0000054112 [S] A0 Write NACK [P
41: 0000054112 [S] A0 Write NACK [P
42: 0000054112 [S] A0 Write NACK [P
43, 0000054112 [S] 40 Write NACK [P
44, 0000054112 [S] 40 Write NACK [P
45 0000054112 [S] &0 Write NACK [P
4f - 0000054112 [S] A0 Write [FP]
47 0000054113 [5] A0 Write 03 44 [P]
4. 0000054113 [S] A0 Write NACK [P
49 0000054113 [S] A0 Write NACK [P
S0 0000054113 [S] A0 Write NACK [P
51 0000054113 [S] 40 Write NACK [P
52 0000054114 [S] &0 Write MACK [P
53 0000054114 [S] A0 Write NACK [P
54 0000054114 [S] A0 Write NACK [P
S5: 0000054114 [S] A0 Writs NACK [P
Cho 0000054114 [S] A0 Write NACK [P
7. 0000054114 [S] A0 Write NACK [P
g, 0000054114 [S] A0 Write NACK [P
9. 0000054115 [S] 40 Write MACK [P
60 0000054115 [S] A0 Write NACK [P
61 0000054115 [S] A0 Write [P]
62 0000054115 [S5] A0 Write 04 55 [P]
63: 0000054115 [S] AQ0 Write NACK [P]
64 0000054116 [S] AQD Write NACK [P]
SC. ANAANEATIE FET AN Wwite WACY BT
Lines 1 to 64 [26% [File Size: 7.98 KB (241 lines) [07/12/2008 00:33]

a

EXAMPLE SOURCE CODE

//**
// USBee DX Data Extractor

// SMBus Extractor Example Program

// Copyright 2006, CWAV All Rights Reserved.

)

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR REV 1
#define MINOR_REV 0

//**
// Declare the Extractor DLL API routines
N R R R R R R R]

#define CWAV_API _ stdcall

240

USBee DX Test Pod User’s Manual

#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT

unsigned char Decimal,
unsigned char Space,

CWAV_IMPORT
CWAV_IMPORT
CWAV_IMPORT
CWAV_IMPORT

int CWAV_API StartExtraction(unsigned long PodNumber, unsigned char All,
unsigned char Hex, unsigned char Binary, unsigned char Comma,
unsigned char Timestamps,
char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
int CWAV_API StopExtraction(void);

char CWAV_API ExtractBufferOverflow(void);

unsigned long CWAV_API ExtractionBufferCount (void);

[k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o Kk

// Define the working buffer

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok KKk ok Kk

#define WORKING_BUFFER SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER _SIZE];

// Command Line Parameter Settings
unsigned long P_PodID 0;
unsigned char O_OutputFilename[256]
unsigned char S_Screen FALSE;
unsigned char A All TRUE;
unsigned char B_DataOnly FALSE;
unsigned char D _DecimalTextValues FALSE;
unsigned char H_HexTextValues TRUE;
unsigned char I_BinaryValues FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited FALSE;
unsigned long Q NumberOfBytes = 0;
unsigned long V_Timestamps TRUE;
unsigned long M _SDA = 1;

unsigned long N_SCL 2;

{0}

void DisplayHelp (void)
{

fprintf (stdout, "\nSMBusExtractor [-?SDHICGAB] [-Q NumberOfBytes] [-V Timestamp]
filename] [-M SMBDatMask] [-N SMBClkMask] -P PodID\n");
fprintf (stdout, "\n ? - Display this help screen\n");

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "\n

fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "\n

fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

void Error (char *err)

USBee DX Pod to Use\n");

P - Pod ID (required)\n");

Output Location Flags\n");

(default off)\n");
(default off)\n");

(0]
S

- Output to filename
- Output to the screen

When to Quit Flags\n");

Q - Number of output values (default = until keypress)\n");

Output Number Format Flags\n");

A - All Packet Fields are output (default)\n");

B - Only data bytes are output\n");

D - Decimal Text Values (\"49\")\n");

H - Hex Text Values (\"31\") default\n");

I - Binary Values (49)\n");

C - Comma Delimited\n");

G - Space Delimited (default)\n");

V - Timestamps (0=off (default),l=Timestamp on\n");

M - SMBData signal (1=ch0, 128=ch7, ch0 default)\n");
N - SMBClk signal (1=ch0, 128=ch7, chl default)\n");

fprintf (stderr, "Error:

")

fprintf (stderr, "$s\n",err) ;
exit(2);

Y

USBee DX Test Pod User’s Manual

unsigned long SMBData,unsigned long SMBClk) ;

241

// Parse all of the command line options
//**

void ParseCommandLine (int argc, char *argv[])

{
BOOL cont;
int i, 37
DWORD WordExample;
BYTE ByteExample;

for(i=1; i < argc; ++1i)
{

if ((argv([i] [0] Il (argv[i] [0] == '/"))
{
cont = TRUE;
for(j=l;argv[i] [J] && cont;++3]) // Cont flag permits multiple commands

in a single argv (like -AR)

switch (toupper (argv[il [§]1))

{

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

242

ipr.
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;

break;

o

strcpy ((char*)O0_OutputFilename, argv[++i]);
cont = FALSE;

break;

et

DisplayHelp () ;

exit (0);

break;

'St

S_Screen = TRUE;

break;

'A':

A All = TRUE;

B_DataOnly = FALSE;
break;

'B':

A _All = FALSE;
B_DataOnly = TRUE;
break;

'D':

D DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

'H':

H_HexTextValues = TRUE;
break;

'I':

I_BinaryValues = TRUE;
H_HexTextValues = FALSE;
break;

'cr:

C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;

break;

'G':

G_SpaceDelimited = TRUE;

break;

o

Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'V

V_Timestamps = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'M':

M _SDA = (DWORD)strtol (argv([++i],NULL,0);

cont = FALSE;

break;

'N':

N_SCL = (DWORD)strtol (argv[++i],NULL,0);

cont = FALSE;

break;

‘w':

WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;

'b':

USBee DX Test Pod User’s Manual

ByteExample = (BYTE)strtol (argv[++i],NULL,O0);

cont = FALSE;

break;

default:

DisplayHelp () ;

fprintf (stdout, "\nCommand line switch %c not
recognized\n", toupper (argv[i] [J]));

Error ("Invalid Command Line Switch");

exit (0);

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp();

Error ("No Pod Number Specified");

K K o K KK o K KKK K KKK K KKK K KKK K K XK KR K KKK K KKK R K KX

// Main Entry Point. The program starts here.
//**

int main(int argc, char* argv[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

printf ("DX Data Extractor\n");
printf ("SMBus Extractor Version %d.%d\n", MAJOR_REV, MINOR _REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[K o K Kk o KKK o K KKK K KKK K K XK K K XK K KKK K KKK KX

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0O OutputFilename, "w");

}

K K ok K Kk o KKK o K KKK K KKK K K XK KK K XK KK KKK K KKK KX

// Start the DX Pod extracting the data we want
] KRRk Kk ko ko kK kK kK Kk ko kK kKK Kk Kk K kK kKR Kk K K kK kK kK

int Endpoint = 999;
int Device = 999;

RetValue = StartExtraction(P_PodID, A_All, D DecimalTextValues, H_HexTextValues,
I_BinaryValues, C_CommaDelimited, G_SpaceDelimited, V_Timestamps, M _SDA, N_SCL) ;

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n");
printf ("Press any key to continue...");
getch();
return(0) ;

//**
// Loop and do something with the collected data
//**

char 0ldSignal = 99;

USBee DX Test Pod User’s Manual 243

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction() ; // Stop the streaming of data from the USBee

}

//**
// If there is data that has come in
//**
int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{

if (length > WORKING BUFFER_SIZE)

length = WORKING BUFFER_SIZE;

K KK o K KK K KKK K KKK K KKK K K XK K XK KKK XK KKK X KKK K KK

// Get the data into our local working buffer

[k ok ko ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kk ok ok Kk

GetNextData (tempbuffer, length);
totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q_NumberOfBytes)

{
if (Q_NumberOfBytes <= length)
{

goto Done; // Done with that many bytes
}
Q_NumberOfBytes -= length;
}
if (timeout++ > 3) break; // Let up once in a while to let the 0S process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[K ok K Kk o KKK K K KKK K KKK K K XK KK K XK KKK R K KKK KX

// Check to see if we have fallen behind too far
[KRRk Kk ko ko kK kK kK Kk ko KKk Kk Kk Kk ko kK kKR KR Kk K kK K Kk K

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{
printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

s

// Give the 0S a little time to do something else
[KRR Kk K Kk ko kK kKR Kk Kk ko KKk Kk Kk K kKK kKR K K K Kk Kk K

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

244 USBee DX Test Pod User’s Manual

]k ok ok ok Kk ok Kk ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Close the file

KK Kk ok K KK o K KK K KKK K K KKK K K XK KK K KKK KK XK KKK XK KKK KX

if (O_OutputFilename[0])
fclose (fout) ;

[k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o ok Kk

// Stop the extraction process
R R A R L R R T ST

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch();

return 0;

USBee DX Test Pod User’s Manual 245

SPI DATA EXTRACTOR

The SPI Bus Data Extractor takes the real-time streaming data from an SPI bus, formats it and allows
you to save the data to disk or process it as it arrives.

SERIAL BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one SPI Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. SPI Clock speeds up to 12MHz

. Asynchronous (internal) sampling of 1MB/s to 24MB/s*

. Output to Binary File*

. Output to Text File*

. Output to Screen*

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The SPI Bus Data Extractor uses any of the 8 signal lines (0 thru 7) and the GND (ground) line.
Connect any of the 8 signals lines to Slave Select, MOSI, and MISO. Connect the GND line to the
digital ground of your system.

EXTRACTOR COMMAND LINE PROGRAM

The SPI Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

246 USBee DX Test Pod User’s Manual

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\SPI”)

. Run the executable using the following command line arguments:

SPIExtractor [-?SWT] [-Q NumberOfBytes] [-R SampleRate] [-M
SlaveSelect] [-L CLK] [-V MOSI] [-J MISO] [-K MOSISample] [-
MOSISample] [-O filename] -P PodID

8}

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)

M - Slave Select Signal (1=signal0,128=signal7)

L - Clk Signal (1=signal0,128=signal7)

V - MOSI Signal (1=signal0,128=signal7)

J - MISO Signal (1=signal0,128=signal7)

K - MOSI Sample Time (1=Rising CLK Edge,0=Falling CLK Edge)
U - MISO Sample Time (1=Rising CLK Edge,0=Falling CLK Edge)
W - Insert Slave Select Boundaries

T - Insert Time Stamps

R - Internal CLK Sample Rate (16Msps default)

. 247 = 24MHz

. 167 = 16MHz (default)
. 127 =12MHz

. 87 =8MHz

. 67 = 6MHz

. 47 = 4MHz

USBee DX Test Pod User’s Manual 247

. 37 =3MHz
. 27 =2MHz
. 17 = 1MHz

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

|DLL FILENAME:

usbedSPI.dll in \Windows\System32

|DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned int SampleRate,
unsigned long PodNumber, unsigned int ClockMode, unsigned char
SlaveSelect, unsigned char CLK, unsigned char MOSI, unsigned char
MISO, unsigned char MOSIEdge, unsigned char MISOEdge, unsigned char
SSInsert, unsigned char Timestamp);

248 USBee DX Test Pod User’s Manual

SampleRate:

. 17 = 1Msps
. 27 = 2Msps
. 37 =3Msps
. 47 = 4Msps
. 67 = 6Msps
. 87 = 8Msps
. 127 = 12Msps
. 167 = 16Msps
. 247 = 24Msps

PodNumber: Pod ID on the back of the USBee DX Test Pod

ClockMode: 2 = Internal Timing as in SampleRate parameter

SlaveSelect: Which signal the extractor uses for Slave Select (1=channel0,128=channel7)
CLK: Which signal the extractor uses for CLK (1=channel0,128=channel7)

MOSI: Which signal the extractor uses for MOSI (1=channel0,128=channel7)

MISO: Which signal the extractor uses for MISO (1=channel0,128=channel7)

MOSIEdge: When the MOSI signal is sampled, O=Falling CLK Edge, 1=Rising CLK Edge
MISOEdge: When the MISO signal is sampled, O=Falling CLK Edge, 1=Rising CLK Edge
SSInsert: Set to 1 to insert Slave Select boundaries into the extracted data stream
Timestamp: Set to 1 to insert Time Stamps into the extracted data stream

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV_API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow (void) ;

USBee DX Test Pod User’s Manual 249

Return:

. 0 - No overflow

. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.

. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places

these bytes into the buffer pointed to by the *buffer parameter.

The SPI Bus Extractor outputs MOSI and MISO values separated by newline characters with optional

Slave Select and Timestamps inserted.

SPIExtractor -O output.dex -P 143 -Q 500000 -M 8 -L 1 -V 2 -J 4 -K 1

-U 0 -w -T

File Edit Wiew Favorites UserCommands Gridlines Tools Help,

ole| aloz| al&lwwleole| [E = =)

0 30
1234506789 |123456789 1123456789 1123456789123

Slave
HCOST -
MISO:
Slave
Slave
MOSTI:
HISO:
Slave
Slave
10: HOSI:
11: HISO:
12: Slave

RNn n i i p B SO PR S

10 20

Select Low 0000002772
A4 FF 76
FF 55 4D
Select High 0000002772
Select Low 0000006137
44 FF 76
FF 55 4D
Select High 0000006137
Select Low 0000009052
A4 FF 76
FF 55 4D
Select High 0000009052

Lines 1 ta 12

|100%, [File Size: 279 bytes (12 lines) [07/17/2006 4

250

USBee DX Test Pod User’s Manual

|EXAMPLE SOURCE CODE

[KKK K Kk K K ko Kk KK Kok Kk Kk K Kk Kk Kk Rk KKk KK Kk K Rk Kk K

// USBee DX Data Extractor
// SPI Bus Extractor Example Program
// Copyright 2006, CWAV All Rights Reserved.

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok Kk

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR_REV 0

][] K K o K KK K KK K KKK K KKK K KKK K XK KK KKK KKK KKK R K KX

// Declare the Extractor DLL API routines

[k o ok ke ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned int SampleRate, unsigned long PodNumber,
unsigned int ClockMode,

unsigned char SlaveSelect, unsigned char
CLK, unsigned char MOSI,

unsigned char MISO, unsigned char
MOSIEdge, unsigned char MISOEdge,

unsigned char SSInsert, unsigned char
Timestamp);
CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
CWAV_IMPORT int CWAV_API StopExtraction(void);
CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);
CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

] ok o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kok ok ok Kk

// Define the working buffer
//***‘k‘k**********‘k**********‘k‘k************************

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char _1 BytePerValue = TRUE;
unsigned char _2 BytePerValue = FALSE;
unsigned char _4 BytePerValue = FALSE;
unsigned char Y LeastSignificantByteFirst = FALSE;
unsigned char Z_MostSignificantByteFirst = TRUE;
unsigned char A_ASCIITextValues = FALSE;
unsigned char D DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;
unsigned char B_BinaryTextValues = FALSE;
unsigned char I_BinaryValues = FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = TRUE;
unsigned char N_NewlineDelimited = FALSE;
unsigned char X _NoDelimeter = FALSE;
unsigned long T_ForceBytesPerLine = 0;
unsigned char M _SlaveSelect = 0;

unsigned char L_CLK = 0;

unsigned char V_MOSI = 0;

unsigned char J MISO = 0;

unsigned char K_MOSIEdge = 0;

unsigned char U_MISOEdge = 0;

unsigned char W_SSInsert = 0;

unsigned char T_Timestamp = 0;

unsigned char E_ExternalClockMode = 2;
unsigned char R SampleRate = 167;

unsigned long Q NumberOfBytes = 0;

void DisplayHelp (void)

USBee DX Test Pod User’s Manual 251

{

fprintf (stdout, "\nSPIExtractor

SlaveSelect]
PodID\n\n");
fprintf (stdout, "

[-L CLK]

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n

USBee DX Pod to Use\n");
P - Pod ID (required)\n");

Output Location Flags\n");
O - Output to filename (default off)\n");
S - Output to the screen (default off)\n");

When to Quit Flags\n");

Q - Number of output values (default = until keypress)

Signal Selection\n");

\n") ;

[-?SWT] [-Q NumberOfBytes] [-R SampleRate] [-M
[-V MOSI] [-J MISO] [-K MOSISample] [-U MOSISample] [-O filename] -P
? - Display this help screen\n");

fprintf (stdout, " M - sSlave Select Signal
fprintf (stdout, " L - Clk Signal

fprintf (stdout, " V - MOSI Signal

fprintf (stdout, " J - MISO Signal

fprintf (stdout, " K - MOSI Sample Time
fprintf (stdout, " U - MISO Sample Time

fprintf (stdout, "\n
fprintf (stdout, "

Clocking Modes\n");
R

fprintf (stdout,"\n Display Option\n");

- Internal CLK Sample Rate

(l=signal0, 128=signal7)\n");

(1=signal0,128=signal7)\n");
(1=signal0,128=signal7)\n");
(1=signal0, 128=signal7)\n");

(1=Rising CLK Edge,0=Falling CLK Edge)\n");
(1=Rising CLK Edge,0=Falling CLK Edge)\n");

(16Msps default)\n");

- Insert Slave Select Boundaries\n");

fprintf (stdout, " W
fprintf (stdout, " T - Insert Time Stamps\n");
exit (0);

void Error (char *err)

fprintf (stderr, "Error: ");
fprintf (stderr, "$s\n", err);
exit (2);

}

[k o ok ok e ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok K Kok ok ok Kk

// Parse all of the command line options

[K ok K Kk o K KK K KKK K KKK K KKK K K XK K KKK K KKK K KX

void ParseCommandLine (int argc,

{

char *argv([])

BOOL cont;

int i,37
DWORD WordExample;
BYTE ByteExample;

for(i=1; i < argc; ++i)
{
if ((argv[i][0] == '-=") || (argv[i][0]
{
cont = TRUE;

for(j=l;argv[i] []J]
in a single argv (like -AR)
switch (toupper (argv[i] [§]1))
{

&& cont;++3)

AR

// Cont flag permits multiple commands

(WORD) strtol (argv[++1i],NULL,0) ;

strcpy ((char*)O_OutputFilename, argv[++i]);

case 'P':
P _PodID =
cont = FALSE;
break;

case '0O':
cont = FALSE;
break;

case '?':
DisplayHelp () ;
break;

case 'S':
S_Screen = TRUE;
break;

case 'Q':
Q_NumberOfBytes =
cont = FALSE;
break;

case 'M':
M SlaveSelect =
cont = FALSE;

252

(DWORD) strtol (argv [++1i],NULL,0) ;

(BYTE) strtol (argv[++i],NULL, 0) ;

USBee DX Test Pod User’s Manual

}

break;

case 'L':
L_CLK = (BYTE)strtol(argv[++i],NULL,0);
cont = FALSE;
break;

case 'V':
V_MOSI = (BYTE)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case 'J':
J_MISO = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'K':
K_MOSIEdge = (BYTE)strtol(argv[++i],NULL,O0);
cont = FALSE;
break;

case 'U':
U_MISOEdge = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'W':

W_SSInsert = 1;
cont = FALSE;
break;

case 'T':
T Timestamp = 1;
cont = FALSE;
break;

case 'E':

E_ExternalClockMode

cont = FALSE;

break;
case 'R':
R_SampleRate = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
default:
DisplayHelp () ;

Error ("Invalid Command Line Switch");

}

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

unsigned long StartTime;

void StartTimer (

{

}

StartTime = GetTickCount();

void StopTimer ()

{
}

printf (" \nTime Delta = %d\n",GetTickCount ()

= (DWORD)strtol (argv[++i],NULL,0) ;

- StartTime);

R

// Main Entry Point. The program starts here.
//**

int main(int argc, char* argv[])

{

int RetValue;
unsigned long totalbytes = 0;

USBee DX Test Pod User’s Manual

253

char *outputstr = new char [256];
unsigned long ByteCounter = 0;

printf ("DX Data Extractor\n");
printf ("SPI Bus Extractor Version %d.%d\n", MAJOR REV, MINOR REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0 OutputFilename, "wb");
else
fout = fopen((char*)0_OutputFilename, "w");

}

]k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Start the DX Pod extracting the data we want
//**

RetValue = StartExtraction(R_SampleRate, P_PodID, E_ExternalClockMode, M SlaveSelect,

L CLK, V_MOSI, J MISO, K MOSIEdge, U MISOEdge, W_SSInsert, T Timestamp);

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber

correct?\n");

254

printf ("Press any key to continue...");
getch () ;
return (0) ;

}

printf ("Processing and Saving Data to Disk.\n");
//**

// Loop and do something with the collected data

s

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction(); // Stop the streaming of data from the USBee

}

[KK Kk kK ko K KK Kk KK KK K KK KK K KK Kk KR Kk ok Kk

// If there is data that has come in
//**

int timeout = 0;
while (unsigned long length = ExtractionBufferCount())

{
if (length > WORKING_BUFFER SIZE)
length = WORKING_BUFFER_SIZE;

//**
// Get the data into our local working buffer

N R R R R R R R R R]
StartTimer () ;

GetNextData (tempbuffer, length);

totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q NumberOfBytes)

{
if (Q_NumberOfBytes <= length)

USBee DX Test Pod User’s Manual

{
goto Done; // Done with that many bytes

}
Q_NumberOfBytes -= length;

// StopTimer () ;

if (timeout++ > 10) break; // Let up once in a while to let the 0S
process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok Kk

// Check to see if we have fallen behind too far

[k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K K ok ok ok Kk

int y = ExtractBufferOverflow();

if (y == 1)
{

printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

[k o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok o Kk ok ok ok Kok ok ok Kk

// Give the 0S a little time to do something else

][ok o ok ko ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok o Kk

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//**

// Close the file

[K ok K K o K KK K K KKK K KKK K KKK K KKK KK KKK R K KKK K KX

if (O_OutputFilename[0])
fclose (fout) ;

[o K Kk o KKK o K KK K KKK K XK K K XK K XK R K KKK KX

X i
// Stop the extraction process
//**

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch () ;

return 0;}

USBee DX Test Pod User’s Manual 255

1-WIRE DATA EXTRACTOR

The 1-Wire Bus Data Extractor takes the real-time streaming data from an 1-Wire bus, formats it and
allows you to save the data to disk or process it as it arrives.

1-WIRE BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one 1-Wire Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. Asynchronous (internal) sampling from 1MB/s to 24MB/s*

. Output to Binary File*

. Output to Text File*

. Output to Screen*

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The 1-Wire Bus Data Extractor uses any of the 8 signal lines (0 thru 7) and the GND (ground) line.
Connect any of the 8 signals lines to the 1-Wire Signal. Connect the GND line to the digital ground of
your system.

EXTRACTOR COMMAND LINE PROGRAM

The 1-Wire Bus Data Extractor includes a Windows Command Prompt executable that lets you
operate the Data Extractor without writing any software. The program is executed in a Command
Prompt window and is configured using command line arguments. The extracted data is then stored
to disk or outputted to the screen depending on these parameters.

256 USBee DX Test Pod User’s Manual

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\1Wire”)

. Run the executable using the following command line arguments:

lWireExtractor [-?STW] [-Q NumberOfBytes] [-R SampleRate] [-M
Signal] [-O filename] -P PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)
M -1 Wire Signal Mask (1=channel0,128=channel7)
W - Insert Reset/Presence Pulse

T - Insert Time Stamps

R - Internal CLK Sample Rate (16Msps default)

. 247 = 24MHz
. 167 = 16MHz
. 127 =12MHz

. 87 =8MHz
. 67 = 6MHz
. 47 = 4MHz
. 37 =3MHz

. 27 =2MHz
. 17 = 1MHz (default)

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

USBee DX Test Pod User’s Manual 257

DLL FILENAME:

UsbedlWire.dll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 — Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned int SampleRate, unsigned long PodNumber,
unsigned int ClockMode, unsigned char Signal, unsigned char SSinsert, unsigned char Timestamp);

SampleRate:

. 17 = 1Msps
. 27 = 2Msps
. 37 =3Msps
. 47 = 4Msps
. 67 = 6Msps
. 87 = 8Msps
. 127 = 12Msps
. 167 = 16Msps
. 247 = 24Msps

258 USBee DX Test Pod User’s Manual

PodNumber: Pod ID on the back of the USBee DX Test Pod

ClockMode: 2 = Internal Timing as in SampleRate parameter

Signal: Which signal the extractor uses for the 1-Wire Signal (1=channel0,128=channel7)
SSinsert: Set to 1 to insert Reset/Presence boundaries into the extracted data stream
Timestamp: Set to 1 to insert Time Stamps into the extracted data stream

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions
CWAV_EXPORT char CWAV API ExtractBufferOverflow(void);

Return:
. 0— No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.

. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The 1-Wire Bus Extractor outputs data values separated by newline characters with option
Reset/Presence and Timestamps inserted.

USBee DX Test Pod User’s Manual 259

lWireExtractor -O output.dex -P 143 -Q 500000

Fil= Edit Wiew Faworites UserCommands —Gridlines

-W -T -R 127

o] = IMIﬁIﬂImIGOIaI

‘ | 20 ‘ 30 | 40
123456?89 123456?89 123456789 123456789 /12345671

Re=set Pul=se 0000002274
Presence Pulse

55 G5 AA

Reset Pulse 0000002436
Presence Pulse

50 G5 Ad

Resst Pulses 0000002540
Presence Pulse

55 G5 AA

10: Reset Pul=se 0000002900
11: Pre=sence Pul=e

12: BB GE Al

13: Reset Pul=e 0000004117
14: Presence Pulse

15: BB G5 Al

16 Re=st Pul== NONONONONOA279

\.DOﬂ"-HJU'\U'InhtAJI\JI—‘-

-

I

lLires 1 ko 15 |29 [File Size: 816 bytes (48 lnes) [07/17/2006 01:08]

EXAMPLE SOURCE CODE

//**
// USBee DX Data Extractor

// 1 Wire Bus Extractor Example Program

// Copyright 2006, CWAV All Rights Reserved.

[KKK Kk kK ok K KK Kk Kk KK K KK KK K KK Kk KR KKk Kk

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR_REV 0

[K K o K Kk o K KK K K KKK K KKK K K XK K K XK K KKK R K KKK K KK

// Declare the Extractor DLL API routines

s

#define CWAV_API _ stdcall
#define CWAV_ IMPORT __declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned int SampleRate,

unsigned int ClockMode,

unsigned char Signal,

SSInsert, unsigned char Timestamp);

CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer,
CWAV_IMPORT int CWAV_API StopExtraction(void);

CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);

CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

[K K ok K Kk ok KKK K KK K KK K KKK K K XK K KKK K KK K KX

// Define the working buffer

R

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char _1 BytePerValue = TRUE;
unsigned char _2 BytePerValue = FALSE;

260 USBee DX Test Pod User’s Manual

unsigned long PodNumber,
unsigned char

unsigned long length);

char
char
char
char
char
char
char
char
char
char
char
char
long
char
char
char

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

_4 BytePerValue = FALSE;

Y LeastSignificantByteFirst = FALSE;
Z_MostSignificantByteFirst = TRUE;
A _ASCIITextValues = FALSE;

D _DecimalTextValues = FALSE;

H HexTextValues = TRUE;
B_BinaryTextValues = FALSE;
I_BinaryValues = FALSE;
C_CommaDelimited = FALSE;
G_SpaceDelimited = TRUE;
N_NewlineDelimited = FALSE;
X_NoDelimeter = FALSE;
T_ForceBytesPerLine = 0;
M _Signal = 0;
W _SSInsert =
T_Timestamp =

0;
07

unsigned char

E_ExternalClockMode =

2;

unsigned char
unsigned long
// Not used yet W

void DisplayHelp (void)
{

fprintf (stdout, "\nlWireExtractor

Signal] [-O filename] -P

fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "

R_SampleRate =
Q_NumberOfBytes =

167;
0;

[-?STW] [-Q NumberOfBytes] [-R SampleRate] [-M
PodID\n\n");
? - Display this help screen\n");
USBee DX Pod

P - Pod ID

to Use\n");
(required) \n") ;

Output Location Flags\n");
O - Output to filename (default off)\n");
S - Output to the screen (default off)\n");

When to Quit Flags\n");

Q - Number of output values (default = until keypress)\n");
Signal Selection\n");

M - Signal (l=signal0,128=signal7)\n");

Clocking Modes\n");

R - Internal CLK Sample Rate (16Msps default)\n");
Display Option\n");

W - Insert Reset/Presence\n");

T - Insert Time Stamps\n");

exit (0);

void Error (char *err)

fprintf (stderr, "Error: ");
fprintf (stderr, "%s\n",err) ;
exit (2);

[K o K Kk o K KK o K KKK K KKK K K KKK K K XK K KKK KKK R K KX

// Parse all of the command line options

R

void ParseCommandLine (int argc,

{

char *argv([])

BOOL cont;

int i,37
DWORD WordExample;
BYTE ByteExample;

for(i=1; i < argc; ++i)
{
if((argv[i][0] == '-") || (argv[i][0] ==
{
cont = TRUE;
for(j=l;argv[i][j] && cont;++J)
in a single argv (like -AR)

switch (toupper (argv[il] [§]1))
{

pr .
P_PodID =
cont = FALSE;

case

USBee DX Test Pod User’s Manual

AR

// Cont flag permits multiple commands

(WORD) strtol (argv[++1i],NULL, 0) ;

261

break;

case '0O':
strcpy ((char*)O_OutputFilename, argv[++i]);
cont = FALSE;

break;
case '?':
DisplayHelp () ;
break;
case 'S':
S_Screen = TRUE;
break;
case 'Q':
Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'M':
M _Signal = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'W':

W_SSInsert = 1;
cont = FALSE;
break;

case 'T':
T Timestamp = 1;
cont = FALSE;

break;
case 'R':
R_SampleRate = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
default:
DisplayHelp () ;

Error ("Invalid Command Line Switch");

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

}

unsigned long StartTime;

void StartTimer ()

{

StartTime = GetTickCount();
}

void StopTimer ()

{
printf (" \nTime Delta = %d\n",GetTickCount() - StartTime);

}

[K ok kK ok KKk o KK KK KX K KKK K KKK KKK K KX

// Main Entry Point. The program starts here.
N R R R R R R R]

int main(int argc, char* argvl[])

{
int RetValue;
unsigned long totalbytes = 0;
char *outputstr = new char [256];

262 USBee DX Test Pod User’s Manual

unsigned long ByteCounter = 0;

printf ("DX Data Extractor\n");
printf ("1lWire Bus Extractor Version %d.%d\n", MAJOR_REV, MINOR_REV) ;

// Parse out the command line options
ParseCommandLine (argc, argv);

KK Kk o K KK K KK K KKK K KKK K K K XK KK K XK KK K KKK KK KKK KK KX

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0_OutputFilename, "w");

}

] K K ok K KK o K KKK K KKK K KKK K K XK KK K KKK K XK KKK XK KKK KX

// Start the DX Pod extracting the data we want
//**

RetValue = StartExtraction(R _SampleRate, P_PodID, E_ExternalClockMode, M_Signal,
W_SSInsert, T Timestamp);

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n") ;
printf ("Press any key to continue...");
getch();
return (0) ;

}
printf ("Processing and Saving Data to Disk.\n");
//**

// Loop and do something with the collected data

s

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction(); // Stop the streaming of data from the USBee

}

s

// If there is data that has come in
//**

int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{
if (length > WORKING_BUFFER SIZE)
length = WORKING_BUFFER_SIZE;

//**
// Get the data into our local working buffer

] KRR Kk Kk ko ko kK kKR Kk Kk KKk Kk Kk Kk kKK kKR KR K K KKk Kk K
StartTimer () ;

GetNextData (tempbuffer, length);

totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q NumberOfBytes)

{
if (Q_NumberOfBytes <= length)

USBee DX Test Pod User’s Manual 263

{
goto Done; // Done with that many bytes

}
Q_NumberOfBytes -= length;

// StopTimer () ;

if (timeout++ > 10) break; // Let up once in a while to let the 0S
process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok Kk

// Check to see if we have fallen behind too far

[k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K K ok ok ok Kk

int y = ExtractBufferOverflow();

if (y == 1)
{

printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

}

[k o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok o Kk ok ok ok Kok ok ok Kk

// Give the 0S a little time to do something else

[ok o ok ok ok Kk e ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kk

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//**

// Close the file

[K ok K K o K KK K K KKK K KKK K KKK K KKK KK KKK R K KKK K KX

if (O_OutputFilename[0])
fclose (fout) ;

[o K Kk o KKK o K KK K KKK K XK K K XK K XK R K KKK KX

X i
// Stop the extraction process
//**

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch () ;

return 0;

264 USBee DX Test Pod User’s Manual

12S DATA EXTRACTOR

The I12S Bus Data Extractor takes the real-time streaming data from an 12S bus, formats it and allows
you to save the data to disk or process it as it arrives.

12S BUS DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one 12S Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V)

. 12S Bit Clock up to 12MHz

. Supports 12S or Left Justified sample formats

. Supports MSBit first and non-standard LSBit first formats

. Asynchronous (internal) sampling from 1MB/s to 24MB/s*

. Output to Binary File*

. Output to Text File*

. Output to Screen*

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The 12S Bus Data Extractor uses any of the 8 signal lines (0 thru 7) and the GND (ground) line.
Connect any of the 8 signals lines to Word Select, CLK, and Data. Connect the GND line to the digital
ground of your system.

EXTRACTOR COMMAND LINE PROGRAM

The 12S Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

USBee DX Test Pod User’s Manual 265

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\I2S”)

. Run the executable using the following command line arguments:

I2SExtractor [-?ST1234JIYZ] [-Q NumberOfBytes] [-R SampleRate] [-M
WordSelect] [-L CLK] [-V Data] [-O filename] -P PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)

M - Word Select Signal (1=signal0,128=signal7)

L - Clk Signal (1=signal0,128=signal7)

V - Data Signal (1=signal0,128=signal7)

Y - Least significant bit first

Z - Most significant bit first

J - Left Justified (first rising edge after Word Select change is first bit)
| - 12S format (second rising edge after Word Select change is first bit)
T - Insert Word Select Boundaries

R - Internal CLK Sample Rate (16Msps default)

. 247 = 24MHz
. 167 = 16MHz (default)
. 127 = 12MHz

. 87 =8MHz
. 67 = 6MHz
. 47 = 4MHz
. 37 =3MHz

266 USBee DX Test Pod User’s Manual

. 27 =2MHz
. 17 = 1MHz

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

DLL FILENAME:

usbedI2S.dll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned int SampleRate,
unsigned long PodNumber, unsigned int ClockMode, unsigned char
WordSelect, unsigned char CLK, unsigned char Data, unsigned char
SSInsert, unsigned char BytesPerValue, unsigned char I2SMode,
unsigned char MSBFirstMode) ;

USBee DX Test Pod User’s Manual 267

SampleRate:

. 17 = 1Msps
. 27 = 2Msps
. 37 =3Msps
. 47 = 4Msps
. 67 = 6Msps
. 87 = 8Msps
. 127 = 12Msps
. 167 = 16Msps
. 247 = 24Msps

PodNumber: Pod ID on the back of the USBee DX Test Pod

ClockMode: 2 = Internal Timing as in SampleRate parameter

WordSelect: Which signal the extractor uses for Word Select (1=channel0,128=channel7)

CLK: Which signal the extractor uses for CLK (1=channel0,128=channel7)

Data: Which signal the extractor uses for Data (1=channel0,128=channel7)

SSInsert: Set to 1 to insert Word Select boundaries into the extracted data stream
BytesPerValue: 1, 2, 3, or 4 bytes per value. Allows capture of 8, 16, 24, or 32 bits of audio data
I12SMode: Set to 1 for 12S data format. Set to O for Left Justified data format.

MSBFirstMode: Bit order (1 = MSBit first on the wire, 0 = LSBit first on the wire)

Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV_API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);

268 USBee DX Test Pod User’s Manual

Return:

. 0 - No overflow

. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.

. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places

these bytes into the buffer pointed to by the *buffer parameter.

I2SExtractor -O output.dex -P 123 -M 1 -L 2 -V 4 -3 -I

-
V| V- Chowav\USBee DX\DataExtractor\12S\125Extractor\Debugloutput.dex E@ﬂ_hj

REC AlA =
DEF FLAT | =5 =_\':"‘

o@ #h # 60

L} 10 20 30 40

File Edit Wiew Favorites UserCommands Gridlines Tools Window Layout Help,

50

123456769 (123456789 123456759 |123456789 (123456780 | 123456789 11234567

Te B2
60

Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1EI1EIE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1EI1EIE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE
Ox1E1ELE

Lines 1to 17 0% [File Size: 603.69 KB (61,818 lines) [02/13/2008 09:44]

-

ANS

EXAMPLE SOURCE CODE

//**
// USBee DX-Pro Data Extractor

// I2S Bus Extractor Example Program

// Copyright 2008, CWAV All Rights Reserved.

[Kk Kk kK ko K KK Kk Kk KK Kk KK Kk K KK Kk KR KKk Kk

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR REV 0

[K ok Kk ok KKK o KKK KKK KX K KKK K KKK KKK K KX

// Declare the Extractor DLL API routines
N R R R R R R R R R e e]

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

USBee DX Test Pod User’s Manual

269

CWAV_TIMPORT int CWAV_API StartExtraction(unsigned int SampleRate, unsigned long PodNumber,
unsigned int ClockMode,
unsigned char WordSelect, unsigned char CLK, unsigned char Data,
unsigned char SSInsert, unsigned char BytesPerValue,
unsigned char I2SMode, unsigned char MSBFirstMode) ;
CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);
CWAV_TIMPORT int CWAV_API StopExtraction(void);
CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);
CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

[k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o Kk

// Define the working buffer

]k ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok KKk ok Kk

#define WORKING_BUFFER SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER _SIZE];

// Command Line Parameter Settings

unsigned long P_PodID = 0;

unsigned char O_OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char BytePerValue = 1;

unsigned char _2 BytePerValue = FALSE;

unsigned char _4 BytePerValue = FALSE;

unsigned char Y LeastSignificantByteFirst = FALSE;
unsigned char Z_MostSignificantByteFirst = TRUE;
unsigned char A_ASCIITextValues = FALSE;

unsigned char D DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;

unsigned char B_BinaryTextValues = FALSE;

unsigned char I_BinaryValues = FALSE;

unsigned char C_CommaDelimited = FALSE;

unsigned char G_SpaceDelimited = TRUE;

unsigned char N_NewlineDelimited = FALSE;
unsigned char X_NoDelimeter = FALSE;
unsigned long T_ForceBytesPerLine = 0;
unsigned char M WordSelect = 0;

unsigned char L_CLK = 0;

unsigned char V_Data = 0;

unsigned char J LeftJustifiedMode = FALSE;
unsigned char I_I2SMode = TRUE;

unsigned char K_DataEdge = 0;

unsigned char U _MISOEdge = 0;

unsigned char T_SSInsert = 0;

unsigned char E_ExternalClockMode = 2;
unsigned char R_SampleRate = 167;

unsigned long Q NumberOfBytes = 0;

void DisplayHelp (void)
{

fprintf (stdout, "\nI2SExtractor [-?ST1234JIZY] [-Q NumberOfBytes] [-R SampleRate] [-M
WordSelect] [-L CLK] [-V Data] [-O filename] -P PodID\n\n");
fprintf (stdout," ? - Display this help screen\n");

fprintf (stdout,"\n USBee DX-Pro Pod to Use\n");
fprintf (stdout, P - Pod ID (required)\n");

fprintf (stdout, "\n Output Location Flags\n");
fprintf (stdout," O - Output to filename (default off)\n");
fprintf (stdout, " S - Output to the screen (default off)\n");

fprintf (stdout,"\n When to Quit Flags\n");
fprintf (stdout, Q - Number of output values (default = until keypress)\n");

fprintf (stdout,"\n Signal Selection\n");

fprintf (stdout, M - Word Select Signal (l=signal0,128=signal7)\n");
fprintf (stdout, " L - Clk Signal (l=signal0O,128=signal7)\n");

fprintf (stdout, V - Data Signal (l=signal0O,128=signal7)\n");

fprintf (stdout, "\n Number of Bytes to Capture per channel\n");

fprintf (stdout, " 1 - One Byte per value (default)\n");
fprintf (stdout, " 2 - Two Bytes per value\n");
fprintf (stdout, " 3 - Three Bytes per value\n");
fprintf (stdout, " 4 - Four Bytes per value\n");

fprintf (stdout,"\n Data Mode\n");
fprintf (stdout, I - I2S Mode (data starts on second clock) (default)\n");
fprintf (stdout, J - Left Justified (data starts on first clock)\n");

fprintf (stdout,"\n Input Bit Order\n");

270 USBee DX Test Pod User’s Manual

fprintf (stdout, " Y - Least Significant Bit First\n");
fprintf (stdout, " Z - Most Significant Bit First (default)\n");

fprintf (stdout,"\n Clocking Modes\n");
fprintf (stdout, " R - Internal CLK Sample Rate (16Msps default)\n");

fprintf (stdout,"\n Display Option\n");
fprintf (stdout, " T - Insert Word Select Boundaries\n");

exit (0);
}

void Error (char *err)

{

fprintf (stderr, "Error: ");
fprintf (stderr, "%s\n",err) ;
exit (2);

}

//**
// Parse all of the command line options
R B S
void ParseCommandLine (int argc, char *argv[])

{

BOOL cont;

int i,37

DWORD WordExample;

BYTE ByteExample;

for(i=1; i < argc; ++i)
{
if ((argv([i][0] == '=") || (argv[i][0] == '/")
{
cont = TRUE;

for(j=1l;argv[i] [j] && cont;++3j) // Cont flag permits multiple in a single argv

(like -AR)
switch (toupper (argv[il [§]1))
{

case 'P':
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case '0O':

strcpy ((char*)0_OutputFilename, argv[++i]);
cont = FALSE;
break;
case '?':
DisplayHelp () ;
break;
case 'S':
S_Screen = TRUE;
break;
case 'Q':
Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case '1':
BytePerValue = 1;
break;
case '2':
BytePerValue = 2;
break;
case '3':
BytePerValue = 3;
break;
case '4':
BytePerValue = 4;
break;
case 'M':
M WordSelect = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'Y':
Y LeastSignificantByteFirst = TRUE;
Z_MostSignificantByteFirst = FALSE;
break;
case 'Z':
Z_MostSignificantByteFirst = TRUE;
Y LeastSignificantByteFirst = FALSE;

USBee DX Test Pod User’s Manual

271

break;

case 'L':
L_CLK = (BYTE)strtol(argv[++i],NULL,0);
cont = FALSE;
break;

case 'V':
V_Data = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;

case 'J':

J_LeftJustifiedMode = TRUE;
I_I2SMode = FALSE;
break;

case 'I':
J_LeftJustifiedMode = FALSE;
I_I2SMode = TRUE;

break;
case 'K':
K_DataEdge = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'U':
U_MISOEdge = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'T':

T_SSInsert = 1;
cont = FALSE;

break;
case 'E':
E_ExternalClockMode = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
case 'R':
R_SampleRate = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
default:
DisplayHelp () ;

Error ("Invalid Command Line Switch");

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

}

unsigned long StartTime;

void StartTimer ()

{

StartTime = GetTickCount();
}

void StopTimer ()

{
printf (" \nTime Delta = %d\n",GetTickCount() - StartTime);

}

Y

// Main Entry Point. The program starts here.
N R R R R R e]

272 USBee DX Test Pod User’s Manual

int main(int argc, char* argv[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [

256];
unsigned long ByteCounter = 0

;

printf ("USBee DX Data Extractor\n");
printf ("I2S Bus Extractor Version %d.%d\n", MAJOR_REV, MINOR_REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

KK K o K KK K KK K KKK K KKK K K KKK KK K KKK K K KKK KK KKK KK KX

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0 OutputFilename, "w");
}

[K K o K KK o K KKK K KKK K KKK K K XK KK K XK K XK KK KKK KK KX

// Start the USBee DX Pod extracting the data we want
//**

RetValue = StartExtraction(R_SampleRate, P_PodID, E_ExternalClockMode,
M WordSelect, L_CLK, V_Data,
T_SSInsert, BytePerValue, I_I2SMode, Z_MostSignificantByteFirst

if (RetValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n") ;
printf ("Press any key to continue...");
getch();
return (0) ;

}
printf ("Processing and Saving Data to Disk.\n");
//**

// Loop and do something with the collected data
[KRRk Kk ko ko kK kK kK ok ko ko KKk Kk Kk Kk ko kK kKR Kk Kk K KKk Kk K

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction() ; // Stop the streaming of data from the USBee

}

s

// If there is data that has come in
//**

int timeout = 0;
while (unsigned long length = ExtractionBufferCount())

{
if (length > WORKING_BUFFER SIZE)
length = WORKING_BUFFER _SIZE;

[KK K Kk kK ko K KK Kok KK KK K KK o KK K KK Kk K Kk ok Kk K

// Get the data into our local working buffer
//**
StartTimer () ;
GetNextData (tempbuffer, length);
totalbytes += length;
if (O_OutputFilename[0])

fwrite (tempbuffer, length, 1, fout); // Write it to a file

USBee DX Test Pod User’s Manual 273

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q_NumberOfBytes)
{
if (Q_NumberOfBytes <= length)
{
goto Done; // Done with that many bytes

}
Q_NumberOfBytes -= length;

// StopTimer () ;

if (timeout++ > 10) break; // Let up once in a while to let the 0S
process
}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[K Kk o K KK o K KKK K KKK K KKK K K XK K K KKK K K KKK KK KKK KK KK

// Check to see if we have fallen behind too far
R R S R R e

int y = ExtractBufferOverflow();

if (y == 1)
{
printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}

[K o K Kk o K KK o K KKK K KKK K KKK KK K XK K KKK K KKK K KX

// Give the 0S a little time to do something else

S

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//**

// Close the file

s

if (O_OutputFilename[0])
fclose (fout) ;

[K ok K Kk o K KK o K KKK K KKK K KKK K K XK K K XK KKK KX

// Stop the extraction process
//**

StopExtraction();
if (kbhit()) getch();
printf ("\nPress any key to continue...");

getch();

return 0;

274 USBee DX Test Pod User’s Manual

LOW AND FULL SPEED USB DATA EXTRACTOR

The USB Data Extractor takes the real-time streaming data from the Full or Low Speed bus, formats it
and allows you to save the data to disk or process it as it arrives.

USB DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. One USB Bus running at Low (1.5Mbps) or Full Speed (12Mbps) USB (not High Speed)

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil =0.8V)

. Time Stamp for each packet

. Output to Text File*

. Output to Screen*

. Comma, Space, or Newline Delimited files

. Packet filter on Device Address, and/or Endpoint

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The USB Bus Data Extractor uses signal 0 and signal 1 as the DPlus and DMinus lines of the USB bus.
Connect these signals to the USB bus using the test clips provided. Connect the GND line to the
digital ground of your system.

EXTRACTOR COMMAND LINE PROGRAM

The USB Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt
window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

USBee DX Test Pod User’s Manual 275

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\USB”)

. Run the executable using the following command line arguments:

Usbedtractor [-?SDHICGAB] [-R USBSpeed] [-Q NumberOfBytes] [-V
Timestamp] [-O filename] -P PodID

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)
R - Bus Speed (0O=Low Speed USB, 1=Full Speed USB)
A - All Packet Fields are output (default)

B — Only Data Bytes are output

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

V - Timestamps (0=off, 1=each packet start)

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

276 USBee DX Test Pod User’s Manual

DLL FILENAME:

usbedUSB.d1ll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 — Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned long PodNumber,
unsigned char Speed, unsigned char All, unsigned char Decimal,
unsigned char Hex, unsigned char Binary, unsigned char Comma,

unsigned char Space, unsigned char Timestamps)

PodNumber: Pod ID on the back of the USBee DX Test Pod

Speed:

. 0 = Low Speed
. 1 = Full Speed

All:

. 0 —Only the data payload bytes are returned
. 1 — All USB packet fields are returned

USBee DX Test Pod User’s Manual 277

Decimal:

. 1 - Decimal Values (text) are output for the data bytes

Hex:

. 1 - Hex Values (text) are output for the data bytes
Binary:

. 1 - All data is in binary form, not text
Comma:

. 1 - Commas are placed between each field/data byte
Space:

. 1 —Spaces are placed between each field/data byte
Timestamp:

. 1 - Print Timestamps at the start of each packet
Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

StopExtraction — Stops the extraction in progress
CWAV_EXPORT int CWAV_API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow (void) ;

278 USBee DX Test Pod User’s Manual

Return:

. 0 — No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places
these bytes into the buffer pointed to by the *buffer parameter.

The USB Bus Extractor DLL sends the extracted data through the *buffer in the requested form based
on the parameters in the StartExtraction call. For example, if Binary is set to a 0, then the *buffer will
receive the binary bytes that make up the data stream. If Hex is set to a 1, the *buffer will contain a

text string which is the data of the USB traffic in Hex text form, separated by any specified delimiters.

- (O] x|
Elle Edit “iew Favorites UserCommands Gridlines Tools Help,
=[S i &5 oo |2 [SR = EE =T]

‘ 1] ‘ 10 ‘ 20 ‘ 30 ‘ 40 50 60 70 | 80 90
123456789 123456789 123456789 123456789 123456789 123456789 | 123456789 (123456789 123456789 | 1234567
318 0000000343 EndFoint DATAD BF 9 2 93 96 97 98 99 94 9B 9C 9D 9E 9F ia

=]
=1

371: 0000000400 IKW Add:
372 0000000401 OUT Add
273: 0000000402 OOT Add:

EndPoint :
EndPoint
EndPoint:

DATAL 41 40 3F 3E 3D 3C 3B 34 39 38 37 36 35 34 33 32 31 ¢

DATAD D2 D3 D4 DS D6 D7 DB D9 DA DE DC DD DE DF EO0 E1 EZ |

DATAD E7 ES E9 Ei EB EC ED EE EF F0 F1 F2 F3 F4 F5 F& F7 =
3

d:2 3
319: 0000000344 OOT &4dd:2 EndPoint:4 DATAQ CA CB CC CD CE CF DO D1 D2 D3 D4 D5 Dé D7 D& DI D& I—I
320: 0000000345 OOT 4dd:2 EndPoint:5 DATA0 06 07 08 09 0& 0B 0C 0D OE OF 10 11 12 13 14 15 168
221:. 0000000346 OUT 4dd:2 EndPoint:6 DATAD 43 44 45 46 47 48 49 44 4B 4C 4D 4E OF 98 61 92 13 ¢
322: 0000000347 OUT 4dd:2 EndPoint:7 DATAQ 81 82 83 84 85 86 87 98 99 84 8B 8C 8D BE 8F 90 91 ¢
323 0000000349 IN 4dd:2 EndPoint:1 DATA0 E3 EZ E1 E0O DF DE DD DC DE DA D9 D8 D7 D6 D5 D4 D3 I
224: 0000000350 INW Add:2 EndPoint:2 DATAD AA A9 AB A7 A6 AS A4 A3 A2 A1 A0 9F 9E 9D 39C 9B %4 :_|
325: 0000000351 IN 4dd:2 EndPoint:3 DATAD 70 6F 6E 6D 6C 6B 64 69 68 67 66 65 64 63 62 61 60 ¢
326 0000000352 IN 4dd:2 EndPoint:4 DATA0 35 34 33 32 31 30 2F 2E 2D 2C 2B 2& 29 28 27 26 25 .
22¥: 0000000353 IN A4dd:2 EndPoint:5 DATAD F3 F8 F7 Fe F5 F4 F2 F2 F1 F0 EF EE ED EC EE EA E9 |
329: 0000000354 IN 4dd:2 EndPoint:6 DATAQ EC BE Bi BY BB E? Be BS B4 B3 B2 Bl BO AF AE AD AC |
329 0000000355 IN 4dd:2 EndPoint:7 DATAQ 7E 7D 7C 7B 74 79 78 77 76 75 74 73 72 71 70 &F EE
330: 0000000356 OUT 4dd:2 EndPoint:1 DATA1 CO C1 C2 C3 C4 25 C6 C7 C8 C9 CACB CC CD CE CF DO I
331 0000000357 OOUT 4dd:2 EndPoint:2 DATA1 00 ACK
23Z2: 0000000358 OUT 4dd:2 EndPoint:3 DATAL 01 02 ACK
333: 0000000359 OUT 4dd:2 EndPoint:4 DATAL 03 04 05 ACK
334 0000000360 OUT 4dd:2 EndPoint:5 DATA1 06 07 08 09 ACK
235: 0000000361 OUT A4dd:2 EndPoint:6 DATA1 0A OB OC 0D OE ACK
336: 0000000362 QUT 4dd:2 EndPoint:7 DATAL OF 10 11 12 13 14 ACK
337 0000000363 IN 4dd:2 EndPoint:1 DATA1 3F 3E 3D 3C 3B 34 39 38 37 36 35 34 33 32 31 30 2F
339: 0000000365 INW 4dd:2 EndPoint:2 DATAL FF ACK
339: 0000000366 IN 4dd:2 EndPoint:3 DATA1 FE FD ACK
340 0000000367 IN 4dd:2 EndPoint:4 DATA1 FC FB F& ACK
341: 0000000368 IN 4dd:2 EndPoint:5 DATAL F9 F8 F7 Fé ACK
34z 0000000369 IN 4dd:2 EndPoint:6 DATA1 F5 F4 F3 F2 F1 ACK
243: 0000000370 INW Add:2 EndPoint:7 DATAl FO EF EE ED EC EB ACK
344 0000000371 OUT 4dd:2 EndPoint:1 DATAQ 15 16 17 18 1% 14 1B ACK
345 0000000372 OUT 4dd:2 EndPoint:2 DATA0 1C 1D 1E 1F 20 21 22 23 ACK
246: 0000000373 OUT Add:2 EndPoint:3 DATAD 24 25 26 27 28 29 24 2B 2C ACK
347: 0000000374 OUT 4dd:2 EndPoint:4 DATAQ 2D 2E 2F 30 31 32 33 34 35 36 ACK
348 0000000375 OOUT 4dd:2 EndPoint:5 DATAD 37 38 39 34 3B 3C 3D 3E 3F 40 41 ACK
249: 0000000376 OUT 4dd:2 EndPoint:6 DATAD 42 43 44 45 46 47 48 49 44 4B 4C 4D ACK
350 0000000377 OUT 4dd:2 EndPoint:7 DATAO0 4E 4F 50 51 52 53 54 55 56 57 58 59 5& ACK
351 0000000378 IN A4dd:2 EndPoint:1 DATAD Ei E9 EB E7 E6 E5 E4 ACK
352: 0000000380 INW 4dd:2 EndPoint:2 DATAQ E3 E2 E1 E0 DF DE DD DC ACK
353 00000003681 IN 4dd:2 EndPoint:3 DATAO0 DE DA D9 D8 D7 D& D5 D4 D3 ACK
254: 0000000382 INW A4dd:2 EndPoint:4 DATAQ D2 D1 DO CF CE CD CC CB CA4 C9 ACK
355 0000000383 IN 4dd:2 EndPoint:5 DATAQ C8 C7 Ce C5 C4 3 C2 C1 C0 EF BE ACK
356 0000000364 IN 4dd:2 EndPoint:6 DATA0 ED BC BE BA B3 B8 B7 Bf ES E4 B3 B2 ACK
35¥: 0000000385 INW 4dd:2 EndPoint:7 DATAQ Bl BO AF AE AD AC 4B AA A9 A8 A7 Ao A5 ACK
359 0000000386 OOT 4dd:2 EndPoint:1 DATA1 5B SC 5D SE 5F 60 61 62 63 64 65 66 67 68 ACK
359 0000000387 OUT 4dd:2 EndPoint:2 DATA1 69 6& 6B 6C 6D GE 6F 70 71 72 73 74 75 76 77 ACK
360: 0000000388 OUT 4dd:2 EndPoint:3 DATAL 78 79 74 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 ACI
361 0000000363 OUT 4dd:2? EndPoint:4 DATA1 83 89 8& 8B &C 8D 8E 8F 30 91 92 93 94 935 96 97 38
262: 0000000330 OUT A4dd:2 EndPoint:5 DATAL 93 94 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 |
363: 0000000391 OUT 4dd:2 EndPoint:6 DATAL AB AC AD AE AF EO0 Bl B2 B} B4 BS B6 BY BS BY BA BE |
364 0000000392 OUT 4dd:2 EndPoint:7 DATA1 BE BF C0 C1 CZ? C3 C4 C5 Ch C7 C8 C9 CA CBE CC CD CE ¢
265: 0000000393 IN Add:2 EndPoint:1 DATA1 A4 A3 A2 A1 AQ 9F 9E 5D 38C 9B S& 99 98 37 ACK
366 0000000395 IN 4dd:2 EndPoint:2 DATAL 96 95 94 93 92 91 90 8F SE 8D 8C 8B BA 89 88 ACK
367 0000000396 IN 4dd:2 EndPoint:3 DATA1 87 86 85 B84 83 82 81 80 7F 7E 7D 7C 7B 74 79 78 ACI
269 0000000397 IN 4dd:2 EndPoint:4 DATAL 77 76 75 74 73 72 71 70 6F 6E 6D 6C 6B 64 69 68 67
369: 0000000398 IN 4dd:2 EndPoint:5 DATA1 66 65 64 63 62 61 60 5F SE 5D 5C 5B G5A 59 58 57 56 !
270 0000000399 IN 4dd:2 EndPoint:6 DATAL 54 53 52 51 50 4F 4E 4D 4C 4B 44 49 485 47 46 45 44
2 7
2 1
2 2
|

[Lines 318 to 373 [10% [File Sice: 492,14 KB (3,402 lines) [07/08/2006 01:00] 4

USBee DX Test Pod User’s Manual 279

Usbedtractor

-0 output.dex -P 3209

-G -Q 10000

-R1-A-H-V1

- =10 x|
Eile Edt Wiew Favorftes UserCommands Gridlines Tools Help.
ole | g8 &% |ioblso| 2| Tls| 2l &l=|a2Ema] x|

| 1] | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
123456789 123456789 (1234567689 /123456769 (123456789 /123456789 [123456789 /1234567689122

1

2. USE Reset

3

4 0000005634 SETUP Add:0 EndPoint:0 GET DESCRIPTOR DEVICE Length:64 DATAD 80 06 [

5. 0000005634 IN 4dd:0 EndPoint:0 D&TAL 12 01 00 01 FF FF FF 40 47 05 31 21 O¢

£ 0000005634 OUT Add:0 EndPoint:0 DATAL ACK

7

4 0000005665 SETUP Add:0 EndPoint:0 SET_&DDRESS 1 DATAD 00 0S5 01 00 00 00 00 00

9. 0000005665 IN Add:0 EndPoint:0 DaTAl ACK

10

11 0000005728 SETUP Add:1 EndPoint:0 GET DESCRIPTOR DEVICE Length:18 DATAO 80 06 [
12: 0000005728 IN Add:1 EndPoint:0 DaTal 12 01 00 01 FF FF FF 40 47 05 31 21 0«
13 0000005728 OUT Add:1 EndPoint:0 DaTAl ACK

14

15 0000005728 SETUF Add:1 EndPoint:0 GET DESCRIPTOR CONFIG Length:9 DATAD 80 0& Of
16 000ODOD5728 IN Add:1 EndPoint:0 DaTA1 09 02 Di 00 01 01 00 80 32 ACK

17 0000005728 OUT Add:1 EndPoint:0 DATAl ACK

18

19 0000005729 SETUEF Add:1 EndPoint:0 GET DESCRIFTOR CONFIG Length:255 DATAQD 80 06 —
20 0000005729 IN Add:1 EndPoint:0 DaTA1l 09 02 Di 00 01 01 00 80 32 09 04 00 OC
21 0000005730 IN 4dd:1 EndPoint:0 DATAD 66 02 40 00 00 07 05 06 02 40 00 00 00
22, 0000005730 IN Add:1 EndPoint:0 D&TAl 05 81 03 40 00 04 07 05 82 02 40 00 OO
23 0000DO5730 IN Add:1 EndPoint:0 DATAD 89 01 10 00 01 07 05 09 01 10 00 01 O°
24 0000005730 OUT Add:1 EndPoint:0 DATAL ACK

25

26 0000005736 SETUP Add:1 EndPoint:0 GET DESCRIPTOR DEVICE Length:18 DATAD 80 06 [
27 0000005736 IH Add:1 EndPoint:0 DATA1 12 01 00 01 FF FF FF 40 47 05 31 21 0
28 0000005736 OUT Add:1 EndPoint:0 DATAl ACK

29

30 0000005738 SETUP Add:1 EndPoint:0 GET DESCRIPTOR COMFIG Length:9 DATAD 80 06 Of
31 0000005738 IN Add:1 EndPoint:0 DaTAl 09 02 Di 00 01 01 00 80 32 ACK

32, 0000005738 OUT Add:1 EndPoint:0 DaTAl ACK

31

34 0000005738 SETUP Add:1 EndPoint:0 GET DESCRIPTOR CONFIG Length:234 DATA0 80 06
35, 0000005738 IN Add:1 EndPoint:0 DaTal 09 02 Di 00 01 01 00 80 32 09 04 00 OO
36 0000DD5739 IN Add:1 EndPoint:0 DATAD 86 02 40 00 00 07 05 06 02 40 00 00 O°
37 0000005739 IN Add:1 EndPoint:0 DATAL 05 81 03 40 00 04 07 0% 82 02 40 00 OC
3%, 0000005739 IN Add:1 EndPoint:0 DATAD 89 01 10 00 01 07 05 09 01 10 00 01 00
33 0000005739 OUT Add:1 EndPoint:0 DaTAl

40

41 0000005739 SETUF Add:1 EndPoint:0 SET_ CONFIGUHATION 1 DATAD 00 09 01 00 00 00 €
42 0000DO5739 IN Add:1 EndPoint:0 DaTAl ACK

43

44 0000005740 SETUF Add:1 EndPoint:0 SET_INTERFACE Alt Setting:0 Interface:0 DATI
45 0000DO5740 IN Add:1 EndPoint:0 DaTAl ACK

16

47 0000010509 SETUP d:0 EndPoint:0 GET DESCRIPTOR DEVICE Length:64 DATAD 80 06 ©
43, 0000010509 IN Add:0 EndPoint:0 DaTAl 12 01 00 01 FF FF FF 40 47 05 31 21 0«
4I9 0000010509 OUT Add: 0 IEndPnint. 0 DiTAl ACE

4
[Lines 1 ko 48 [36% [File Size: 10.94 KB (131 lines) [07/17/2008 16:02]

N

280

USBee

DX Test Pod User’s Manual

Usbedtractor

USBee AX-Pro Data Extractors'output.dex

-0 output.dex -P 3209 -G -Q 10000 -R 1 -B

File Edit ‘iew Favorites UserCommands Gridlines Tools Help,
al@] @G| &% |Calso[e e | R
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70
123456789 /123456789 123456789 |123456789 123456789 /123456789 123456789 |12345678

1: 80 06 00 01 00 00 40 0O -
Z: 12 01 00 01 FF FF FF 40 47 05 31 21 04 00 00 00 00 01 =
3

4. 00 05 01 00 00 0O 0O 00

5

6: 80 06 00 01 00 00 12 00

7: 12 01 00 01 FF FF FF 40 47 05 31 21 04 00 00 00 00 01

g

9. 80 0e 00 02 00 0O 09 0O

10

11: 80 06 00 02 00 00 FF 00

12: 09 02 DA 00 01 01 00 80 32 09 04 00 00 00 FF FF FF 00 09 04 00 01 0D FF FF FE
13:. 86 02 40 00 00 07 05 06 02 40 00 OO0 07 05 88 01 10 00 01 07 05 08 01 10 00 01
14: 05 81 03 40 00 04 07 05 82 02 40 00 00 07 05 02 02 40 00 00 07 05 84 02 40 0OC
15: 89 01 10 00 01 07 05 09 01 10 00 01 07 05 84 01 10 00 01 07 05 0OA O1 10 00 01
16

17. 80 06 00 01 00 00 12 00

18: 12 01 00 01 FF FF FF 40 47 05 31 21 04 00 00 00 00 01

19:

20: 09 02 DA 00 01 01 00 80 32

21

22: 80 06 00 02 00 00 E& 00

23: 09 02 DA 00 01 01 00 80 32 09 04 00 00 00 FF FF FF 00 09 04 00 01 0D FF FF FE
24: 86 02 40 00 00 07 05 Oe6 02 40 00 00 07 05 885 01 10 00 01 07 05 08 01 10 OO0 O1
25. 05 81 03 40 00 0A 07 05 82 02 40 00 00 07 05 02 02 40 00 00 07 05 84 02 40 OC
Z6: 89 01 10 00 01 07 05 0% 01 10 00 01 07 05 84 01 10 00 01 07 05 0OA 01 10 00 01
27

28: 00 09 01 00 00 00 00 0o I
29

30: 01 OB 00 00 00 00 00 0o A
1| 3
[Lines 1 ta 30 96% [File Size: 1,73KE (31 lines) [07/17/2006 16:35] 4

USBee DX Test Pod User’s Manual 281

Usbedtractor -0 output.dex -P 3209 -G -Q 10000 -R 1 -A -H -V 1 -B -
D

rogram Files',USBee AX-Pro Data Extractors' -3l

File Edit Wiew Favorites UserCommands Gridlines Tools Help,
E fle]| &

Q@] @lu|z] el &7 sk [£ &

|123456?89|123456?89 123456?89|123456?89|123456?89|12345
128
o01s DDl DDD DDl 255 255 255 064 071 005 049 033 004 000

000 005 001 000 000 000 000 oOo

128 006 000 001 000 000 018 000
015 001 000 001 255 255 255 064 071 005 049 033 004 000

9. 00% 002 218 000 001 001 000 128 050

11: 128 006 000 002 000 00O 255 000

12: 009 002 218 000 001 001 OO0 128 050 009 004 000 000 OO0
13: 134 002 064 000 OO0 007 005 006 002 064 000 00O 007 005
14: 005 129 003 064 000 010 OO7 005 130 002 064 000 000 OO7
15: 137 001 016 000 001 007 005 009% 001 016 000 001 007 O0%

16

1%7:. 128 006 000 001 00O 00O 018 000

18:

1%. 00% 002 21@ 000 001 001 000 128 050
20

21: 128 006 000 002 000 00O 234 000

22. 009 002 218 000 001 001 OO0 128 050 009 004 000 000 OO0
23 134 002 064 000 OO0 007 005 OO0 002 064 000 00O 007 OO0
24: 005 129 003 064 000 010 OO7 005 130 002 064 000 000 OO7
250 137 001 016 000 001 007 005 009 001 O0le 000 001 007 O0%

gg; ooo0 o09 001 000 000 000 000 oo
%gi 0ol 011 000 000 000 000 000 OO0
%D: :J
[Lines 1 ta 30 [100%% [File Size: 2,22 KE (30lines) [07/17/2006 16:29] 4

282 USBee DX Test Pod User’s Manual

Usbedtractor -0 output.dex -P 3209 -G -Q 10000 -R 1 -B -I

USBee AX-Pro Data Extractors'output.dex - |EI|1|

File Edit Wew Favoriies UserCommands Gridlines Tools Help,

al@] @G| &% |Calso[e

00 01 02 03 04 05 0Op 07 08 09 04 OB OC 0D OE OF
oooooooo 12 01 00 01 FF FF FF 40 47 05 31 21 04 00 00 00
goooooio 0o 01 QA 0OA OO OS5 01 00 OO0 OO OO0 0O QA DA 12 01
oooooozo oo 01 FF FF FF 40 47 05 31 21 04 00 00 00 00 01
ooooooso oA 0OA 80 06 OO0 02 00 00 09 00 OA 09 02 DA 00 01
oooooo4o 01 00 80 32 0A OA 80 06 OO0 02 00 OO FF OO0 0& 09
goooooso 02 DA OO 01 01 00 80 32 09 04 OO 00 OO0 FF FF FF
ooooooen oo 09 04 00 01 OD FF FF FF 00 07 05 81 03 10 00
ooooooyo 0ad 07 05 82 02 40 00 00 07 05 02 02 40 00 00 O7
noooooso 05 84 02 40 00 00 07 05 04 02 40 00 00 07 05 O&
goooooso g6 02 40 00 00 07 05 06 02 40 00 00 07 05 88 01
ooooooso 1o 00 01 07 05 08 01 10 00 01 07 05 8% 01 10 00
ooooooeEo 01 07 05 09 01 10 00 01 07 05 8A O1 10 00 01 07
ooooooco o5 0A 01 10 00 01 09 04 00 02 0D FF FF FF 00 07
gooooooo 0OA OS5 81 03 40 00 0A O7 05 82 02 40 00 00 07 05
ooooooED 02 02 40 00 00 07 05 84 02 40 00 00 07 05 04 02
ooooooFEo 40 00 00 07 05 86 02 40 00 00 07 OS5 0Oe 02 40 00
oooooioo oo 07 05 85 01 00 01 01 07 05 08 O1 00 01 01 07
gooooiio 05 0A 89 01 10 00 01 07 05 09 01 10 00 01 07 05
oooooizo 8A 01 10 00 01 07 05 0A& 01 10 00 O1 0A& OA 80 06
oooooiso oo 01 00 00 12 00 0A 12 01 00 01 FF FF FF 40 47
oooooid4o 05 31 21 04 00 00 00 00 01 0OA OA B0 Oe OO0 02 0O
gooooils0 00 09 00 0A 0OA 80 06 00 02 OO OO0 EA 0O 0OA 86 02
oooooien 40 00 00 07 05 Oe 02 40 00 00 07 O5 88 01 10 OO0
oooooi¥o 01 07 05 08 01 10 00 01 07 05 89 01 10 00 01 o7
nooooiso 05 09 01 10 00 01 07 05 84 01 10 00 01 07 05 OA
gooooiso 01 10 00 01 09 04 00 02 0D FF FF FF 00 07 0A 05
oooooiino 81 03 40 00 0A 07 05 82 02 40 00 00 07 05 02 02
oooooieo 40 00 00 OF 05 84 02 40 00 00 07 OS5 04 02 40 00
oooooico oo 07 05 86 02 40 00 00 07 05 06 02 40 00 00 07
gooooibo 05 8% 01 00 01 01 07 05 08 01 OO 01 01 OF OS5 0&A
oooooiEo 8% 01 10 00 01 07 05 09 01 10 00 01 07 05 84 01

| »

oooooiFo 10 00 01 07 05 O& 01 10 00 O1 0A& 04 00 09 01 00 L :J
|Lires 1 ta 32 96% |File Size: 528 bytes (33 lines) [07/17/2006 16:32] v

USBee DX Test Pod User’s Manual 283

EXAMPLE SOURCE CODE

//**
// USBee DX Data Extractor

// USB Bus Extractor Example Program

// Copyright 2006, CWAV All Rights Reserved.

]k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#include "stdafx.h"
#include "stdio.h"
#include "conio.h"
#include "windows.h"
#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#define MAJOR_REV 1
#define MINOR_REV 0

K K o K KK o K KK K KK K KKK K KKK KK K XK K KKK K KKK KK KX

// Declare the Extractor DLL API routines

[k o ok ok ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned long PodNumber, unsigned char Speed,
unsigned char All, unsigned char Decimal, unsigned char Hex, unsigned char Binary, unsigned
char Comma, unsigned char Space, unsigned char Timestamps, unsigned int Endpoint, unsigned

int Device) ;

CWAV_IMPORT char CWAV_API GetNextData(unsigned char *buffer, unsigned long length);

CWAV_IMPORT int CWAV_API StopExtraction(void);
CWAV_IMPORT char CWAV_API ExtractBufferOverflow(void);

CWAV_IMPORT unsigned long CWAV_API ExtractionBufferCount (void);

[K o K Kk o K KK o K KKK K KKK K KKK K K XK K XK R K KKK R K KX

// Define the working buffer
[k

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings
unsigned long P_PodID = 0;

unsigned char O OutputFilename[256] = {0};
unsigned char S_Screen = FALSE;

unsigned char A_All = TRUE;

unsigned char B_DataOnly = FALSE;

unsigned char D_DecimalTextValues = FALSE;
unsigned char H_HexTextValues = TRUE;
unsigned char I_BinaryValues = FALSE;
unsigned char C_CommaDelimited = FALSE;
unsigned char G_SpaceDelimited = TRUE;
unsigned long Q NumberOfBytes = 0;

unsigned long R_Speed = 1; // Full Speed

unsigned long V_Timestamps = TRUE;

void DisplayHelp (void)
{

fprintf (stdout, "\nUsbedtractor [-?SDHICGAB] [-R USBSpeed] [-Q NumberOfBytes] [-V
Timestamp] [-O filename] -P PodID\n");
fprintf (stdout, "\n ? - Display this help screen\n");

fprintf (stdout,"\n USBee DX Pod to Use\n");
fprintf (stdout, " P - Pod ID (required)\n");
fprintf (stdout,"\n Output Location Flags\n");

fprintf (stdout, " O - Output to filename (defa
fprintf (stdout, " S - Output to the screen (de

284

ult off)\n");
fault off)\n");

USBee DX Test Pod User’s Manual

fprintf (stdout,"\n When to Quit Flags\n");

fprintf (stdout, " Q - Number of output values (default = until keypress)\n");
fprintf (stdout,"\n Input Format Flags\n");

fprintf (stdout, " R - Bus Speed (0=Low Speed USB, 1=Full Speed USB)\n");
fprintf (stdout,"\n Output Number Format Flags\n");

fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

All Packet Fields are output (default)\n");

- Only data bytes are output\n");

Decimal Text Values (\"49\")\n");

Hex Text Values (\"31\") default\n");

Binary Values (49)\n");

- Comma Delimited\n");

Space Delimited (default)\n");

Timestamps (0=off (default),l=Timestamp on\n");

<QOQOHD oW
1

void Error (char *err)

fprintf (stderr, "Error: ");
fprintf (stderr, "$s\n",err);
exit (2);

R B B
// Parse all of the command line options
//**
void ParseCommandLine (int argc, char *argv[])
{

BOOL cont;

int i,3;

DWORD WordExample;

BYTE ByteExample;

for(i=1; i < argc; ++i)
{
if ((argv([i][0] == '-') || (argv[i][0] == '/")
{
cont = TRUE;

for (j=l;argv[i] [J] && cont;++3) // Cont flag permits multiple commands

in a single argv (like -AR)
switch (toupper (argv[i] [§]1))
{

case 'P':
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;

case '0O':

strcpy ((char*)O_OutputFilename, argv[++i]);
cont = FALSE;
break;
case '?':
DisplayHelp () ;
exit (0);

break;

case 'S':
S_Screen = TRUE;
break;

case 'A':
A All = TRUE;
B_DataOnly = FALSE;
break;

case 'B':
A All = FALSE;
B_DataOnly = TRUE;
break;

case 'D':
D DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

case 'H':
H_HexTextValues = TRUE;

USBee DX Test Pod User’s Manual

285

break;

case 'I':
I_BinaryValues = TRUE;
H_HexTextValues = FALSE;
break;

case 'C':
C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;

break;
case 'G':
G_SpaceDelimited = TRUE;
break;
case 'Q':
Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'V':
V_Timestamps = (DWORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;
case 'R':
R_Speed = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
default:
DisplayHelp () ;

fprintf (stdout, "\nCommand line switch %c not

recognized\n", toupper (argv[i] [j]));

Error ("Invalid Command Line Switch");
exit (0);

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;
Error ("No Pod Number Specified");

s

// Main Entry Point. The program starts here.
//**

int main(int argc, char* argv[])

{

286

int RetValue;

unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

printf ("DX Data Extractor\n");
printf ("USB Bus Extractor Version %d.%d\n", MAJOR REV, MINOR REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[ok ko KKk K KK KK K KX K K XK K KKK KKK K KX

// Open up a file to store extracted data into
N R R R R R e]

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0 OutputFilename, "wb");

USBee DX Test Pod User’s

Manual

else
fout = fopen((char*)0O_OutputFilename, "w");

}

K K o K KK K KK K KKK K KKK K K K XK K KKK K K KKK KK XK KKK KK

// Start the DX Pod extracting the data we want

[k ok ok ok Kk ok Kk ok ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o ok Kk

int Endpoint = 999;
int Device = 999;

RetValue = StartExtraction(P_PodID, R _Speed, A _All, D DecimalTextValues,
H_HexTextValues, I_BinaryValues, C_CommaDelimited, G_SpaceDelimited, V_Timestamps,
Endpoint, Device) ;

if (RetvValue == 0)
{
printf ("Startup failed. Is the USBee DX connected and is the PodNumber

correct?\n") ;
printf ("Press any key to continue...");
getch();
return (0);

[ok ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Loop and do something with the collected data
//**

char 0l1dSignal = 99;

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction(); // Stop the streaming of data from the USBee

}

[k o ok ok o ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kok ok ok Kk

// If there is data that has come in
R B

int timeout = 0;
while (unsigned long length = ExtractionBufferCount())

{
if (length > WORKING_BUFFER SIZE)
length = WORKING_ BUFFER SIZE;

s

// Get the data into our local working buffer
//**

GetNextData (tempbuffer, length);
totalbytes += length;

if (O_OutputFilename[0])
fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)
fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q_NumberOfBytes)

{
if (Q_NumberOfBytes <= length)

{
goto Done; // Done with that many bytes

}
Q_NumberOfBytes -= length;
}

if (timeout++ > 3) break; // Let up once in a while to let the OS process
}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[ok kK ok K Kk o Kk KK KKK K KKK K KKK K KKK K KK

USBee DX Test Pod User’s Manual 287

// Check to see if we have fallen behind too far
//**

int y = ExtractBufferOverflow();

if (y == 1)
{

printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files.\n");
goto Done;

[k o ok ok ok Kk ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kk

// Give the 0S a little time to do something else
//**

Sleep(15);

Done:
if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//**

// Close the file
//***‘k‘k**********‘k************************************

if (O_OutputFilename[0])
fclose (fout);

s

// Stop the extraction process
//**

StopExtraction();
if (kbhit()) getch();
printf ("\nPress any key to continue...");

getch();

return 0;

288 USBee DX Test Pod User’s Manual

CAN DATA EXTRACTOR

The CAN Bus Data Extractor takes the real-time streaming data from the CAN bus, formats it and
allows you to save the data to disk or process it as it arrives.

CAN DATA EXTRACTOR SPECIFICATIONS

. Continuous Real-Time Data Streaming

. Monitors one CAN Bus

. TTL Level inputs (0-5V max, Vih = 2.0V, Vil = 0.8V) — intended to be used on the digital side
of a CAN bus transceiver (such as the Microchip MCP2551)

. 11 or 29-bit identifier supported

. Time Stamp for each packet

. Output to Text File*

. Output to Screen*

. Comma or Space Delimited files

. Packet filter on Identifier

. Output File Viewer (including binary, text, search and export functions)

. Extractor API libraries interface directly to your own software to further process the
extracted data. Any language that supports calls to DLLs is supported.

* - output bandwidths are dependent on PC USB hardware, hard disk and/or screen throughput.

HARDWARE SETUP

To use the Data Extractor you need to connect the USBee DX Test Pod to your hardware using the
test leads. You can either connect the test leads directly to pin headers on your board, or use the test
clips for attaching to your components.

Please note that the USBee DX Test Pod inputs are strictly 0-5V levels. Any voltage outside this range
on the signals will damage the pod and may damage your hardware. If your system uses different
voltage levels, you must buffer the signals externally to the USBee DX Test Pod before connecting the
signals to the unit.

The CAN Bus Data Extractor connects to the digital side of your CAN bus transceiver and only needs
to listen to the receiving side of the transceiver (such as the RxD pin on the Microchip MCP2551 CAN

bus transceiver chip). Use signal 0 as the RxD data line and connect the GND line to the digital ground
of your system. Connect these signals to the CAN bus transceiver IC using the test clips provided.

EXTRACTOR COMMAND LINE PROGRAM

The CAN Bus Data Extractor includes a Windows Command Prompt executable that lets you operate
the Data Extractor without writing any software. The program is executed in a Command Prompt

USBee DX Test Pod User’s Manual 289

window and is configured using command line arguments. The extracted data is then stored to disk
or outputted to the screen depending on these parameters.

To run the Data Extractor:

. Install the USBee DX software on your PC

. Install the Data Extractor software on your PC

. Plug in your USBee DX Test Pod into your PC using a USB 2.0 High Speed Port

. Open a Windows Command Prompt window by clicking Start, All Programs, Accessories,
Command Prompt.

. Change the working directory to the Data Extractor directory

. (“cd \program files\USBee Data Extractor\CAN")

. Run the executable using the following command line arguments:

CANExtractor [-?SDHICGAB] [-R CANSpeed] [-Q NumberOfBytes] [-V
Timestamp] [-O filename] [-M MaxID] [-N MinID] -P

? - Display this help screen

P - Pod ID (required)

O - Output to filename (default off)

S - Output to the screen (default off)

Q - Number of output values (default = until keypress)
R - Bus Speed in bits/second (default = 250000)
A - All Packet Fields are output (default)

B — Only Data Bytes are output

D - Decimal Text Values ("49")

H - Hex Text Values ("31") default

| - Binary Values (49)

C - Comma Delimited

G - Space Delimited (default)

M - Maximum Identifier Filter

N - Minimum Identifier Filter

V - Timestamps (0=off, 1=each packet start)

290 USBee DX Test Pod User’s Manual

EXTRACTOR API

The Data Extractor is implemented using a Windows DLL that interfaces to the existing USBee DX DLL
and drivers. This DLL can be called using any software language that supports calls to DLLs. Below
are the details of this DLL interface and the routines that are available for your use.

DLL FILENAME:

usbedCAN.d1ll in \Windows\System32

DLL EXPORTED FUNCTIONS AND PARAMETERS

ExtractionBufferCount — Returns the number of bytes that have been extracted from the data stream
so far and are available to read using GetNextData.

CWAV_EXPORT unsigned long CWAV_API ExtractionBufferCount (void)

Returns:

. 0 — No data to read yet
. other — number of bytes available to read

GetNextData — Copies the extracted data from the extractor into your working buffer

CWAV_EXPORT char CWAV_API GetNextData (unsigned char *buffer,
unsigned long length);

buffer: pointer to where you want the extracted data to be placed
length: number of bytes you want to read from the extraction DLL

Returns:

. 0 — No data to read yet
. 1 - Data was copied into the buffer

StartExtraction — Starts the Data Extraction with the given parameters.

CWAV_EXPORT int CWAV_API StartExtraction(unsigned long PodNumber,
unsigned long Speed, unsigned char All, unsigned char Decimal,
unsigned char Hex, unsigned char Binary, unsigned char Comma,
unsigned char Space, unsigned char Timestamps, unsigned long
MaxIDFilter, unsigned long MinIDFilter)

PodNumber: Pod ID on the back of the USBee DX Test Pod

USBee DX Test Pod User’s Manual 291

Speed: Bit rate of the CAN bus in bits per second

All:

. 0 —Only the data payload bytes are returned

. 1 - All CAN packet fields are returned
Decimal:

. 1 - Decimal Values (text) are output for the data bytes
Hex:

. 1 - Hex Values (text) are output for the data bytes
Binary:

. 1 - All data is in binary form, not text
Comma:

. 1 - Commas are placed between each field/data byte
Space:

. 1 —Spaces are placed between each field/data byte
Timestamp:

. 1 - Print Timestamps at the start of each packet
MaxIDFilter:

. The Maximum Identifier to log (OxFFFFFFFF default)
MinIDFilter:

. The Minimum Identifier to log (0 default)
Returns:

. 1 —if Start was successful
. 0 —if Pod failed initialization

292 USBee DX Test Pod User’s Manual

StopExtraction — Stops the extraction in progress

CWAV_EXPORT int CWAV_API StopExtraction(void);

Returns:

. 1-always

ExtractBufferOverflow — Returns the state of the overflow conditions

CWAV_EXPORT char CWAV_API ExtractBufferOverflow(void);

Return:

. 0— No overflow
. 1 - Overflow Occurred. ExtractorBuffer Overflow condition cleared.
. 2 — Overflow Occurred. Raw Stream Buffer Overflow

USBee DX Test Pod User’s Manual 293

EXTRACTION DATA FORMAT

The GetNextData routine gets a series of bytes that represent the extracted data stream and places

these bytes into the buffer pointed to by the *buffer parameter.

The CAN Bus Extractor DLL sends the extracted data through the *buffer in the requested form based
on the parameters in the StartExtraction call. For example, if Binary is set to a 0, then the *buffer will

receive the binary bytes that make up the data stream. If Hex is set to a 1, the *buffer will contain a

text string which is the data of the CAN traffic in Hex text form, separated by any specified delimiters.

CANExtractor -0 output.dex -S -P 3209 -Q 500000 -R 250000 -A -H -V 1

File Edit Wiew Favorites UserCommands Gridlines Tools
(3 dh| &% |Cwlse Tle | &R
‘ 0 | 10 | 20 | 30 ‘ 10 ‘ 50 | 60 | 70 ‘ 80 ‘ 90
123456709 |123466789 (1234567689 123456789 123456789 123456769 123456789 |1234562689(123466789 12345567
1. 0000005698 11-bitID:001 RTR:0 Control:00 CRC:2213 ACK.D “
2: 0000005869 11-bitID:001 RTR:0 Control:02 Data:00 00 CRC:2ACD ACK:D
3. DODOO0S896 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:D
4: 0000005924 11-bitID:001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:1F40 ACK:D
S: 0000005949 11-hitID:123 RTR:0 Control:08 Datz:00 11 22 33 44 55 66 77 CRC:0BD4 ACH:D
5. 0000005972 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21E2 ACK:0
7. 0000005996 29-bitID:00000FFF RTR:0 Control:07 Dats:FF FE FF FF FF FF FF CRC:4C56 ACK:0
g: 0000006046 29-bitID:00000001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:36B4 ACK:D
3. 0000006062 29-bitID:00000001 RTR:0 Control:04 Data:00 00 00 00 CRC:6216 ACK:D
10: 0000006079 29-bitID:00000001 RTR:0 Control:04 Data:12 34 43 21 CRC:1B8B ACK:0
11: 0000006087 11-bitID:001 RTR:0 Control:00 CRC:2213 ACK:D
12: 0000006100 11-bitID:001 RTR:0 Control 02 Data:00 00 CRC:2ACD ACK 0
13: 0000006116 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:Q
14: 0000006141 11-bitID:001 RTR:0 Comtrol:08 Data:00 00 00 00 00 00 00 00 CRC:1F40 ACK:0
15: 0000006166 11-bitID:123 RTR:0 Control 08 Data:00 11 22 33 44 55 66 77 CRC:0BD4 ACK:0
15: 0000006189 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21B2 ACK:D
17: 0000006212 29-bitID:00000FFF RTR:0 Contraol:07 Data:FF FF FF FF FF FF FF CRC:4C56 ACK:D
13: 0000006262 29-bitID:00000001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:36B4 ACK:0
1%: 0000006279 29-bitID: 00000001 RTR:0 Control:04 Data:00 00 00 00 CRC:6216 ACK:0
20: 0000006285 29-bitID:00000001 RTR:0 Comtrol:04 Data:12 34 43 21 CRC:1BBB ACK:0
21: 0000006303 11-bitID:001 RTR:0 Control 00 CRC:2213 ACK:D
22: 0000006316 11-bitID:001 RTR:0 Control:02 Data:00 00 CRC:2ACD ACK:0
23: 0000006332 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:O
24: 0000006358 11-bitID:001 RTR:0 Control 08 Data:00 00 00 00 00 00 00 00 CRC:1F4d ACK:0
25: 0000006383 11-bitID:123 RTR:0 Control:08 Data:00 11 22 33 44 55 66 77 CRC:0BD4 ACK:0
25: 0000006405 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21B2 ACK:D
27: 0000006428 29-bitID:00000FFF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:4C56 ACK:D
20: 0000006478 29-bitID:00000001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:36B4 ACK:0
23: 0000006435 29-bitID:00000001 RIR:0 Control:04 Data:00 00 00 00 CRC:6216 ACK:D
30: 0000006512 29-bitID:00000001 RTR:0 Control:04 Data:12 34 43 21 CRC:1B8B ACK:0
31: 0000006520 11-bitID:001 RTR:0 Control:00 CRC:2213 ACK:D
32: 0000006532 11-bitID:001 RTR:0 Control 02 Data:00 00 CRC:2ACD ACK 0
33: 0000006549 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:Q
34: 0000006574 11-bitID:001 RTR:0 Comtrol:08 Data:00 00 00 00 00 00 00 00 CRC:1F40 ACK:0
35: 0000006539 11-bitID:123 RTR:0 Control 08 Data:00 11 22 33 44 55 66 77 CRC:0BD4 ACK:0
35: 0000006622 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21B2 ACK:D
37: 0000006645 29-bitID:00000FFF RTR:0 Contraol:07 Data:FF FF FF FF FF FF FF CRC:4CS6 ACK:D
33: 0000006635 29-bitID:00000001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:36B4 ACK:0
3%: 0000006711 29-bitID: 00000001 RTR:0 Control:04 Data:00 00 00 00 CRC:6216 ACK:0
10: 0000006728 29-bitID:00000001 RTR:0 Comtrol:04 Data:12 34 43 21 CRC:1BBB ACK:D
41: 0000006736 11-bitID:001 RTR:0 Control 00 CRC:2213 ACK:D
42: 0000006749 11-bitID: 001 RTR:0 Control:02 Data:00 00 CRC:2ACD ACK:0
43: 0000006765 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:O
44: 0000006730 11-bitID:001 RTR:0 Control 08 Data:00 00 00 00 00 00 00 00 CRC:1F4d ACK:0
45: 0000006615 11-bitID:123 RTR:0 Control:08 Data:00 11 22 33 44 55 66 77 CRC:0BD4 ACK:0
15: 0000006838 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21B2 ACK:D
47 0000006861 29-bitID:00000FFF RIR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:4C56 ACK:D
49: 0000006911 29-bitID:00000001 RTR:0 Control:08 Data:00 00 00 00 00 00 00 00 CRC:36B4 ACK:0
19: 0000006928 29-bitID:00000001 RTR:0 Control:04 Data:00 00 00 00 CRC:6216 ACK:D
50: 0000006944 29-bitID:00000001 RTR:0 Control:04 Data:12 34 43 21 CRC:1B8B ACK:0
51: 0000006952 11-bitID:001 :0 Comtrol:00 CRC:2213 ACK:D
52: 0000006965 11-bitID:001 RTR:0 Control:02 Data:00 00 CRC:2ACD ACK. 0
53: 0000006982 11-bitID:001 RTR:0 Control:04 Data:12 34 43 21 CRC:6219 ACK:Q
54: 0000007007 11-bitID:001 RTR:0 Control:08 Dats:00 00 00 00 00 00 00 00 CRC:1F40 ACK:0
55. 0000007032 11-bitID:123 RTR:0 Control 08 Data:00 11 22 33 44 55 66 77 CRC:0BD4 ACK:0
55: 0000007054 11-bitID:1FF RTR:0 Control:07 Data:FF FF FF FF FF FF FF CRC:21B2 ACK:D
57: 0000007077 29-bitID:00000FFF RTR:0 Contral:07 Data:FF FF FF FF FF FF FF CRC:4C56 ACK:D =l
|Lires 1 ta 57 [16% [File Size: 26.02KE (337 lines) [07)10/2006 01:53] 4

294

USBee DX Test Pod User’s Manual

EXAMPLE SOURCE CODE

[KKK K Kk K K ko Kk KK Kok Kk Kk K Kk Kk Kk Rk KKk KK Kk K Rk Kk K

// USBee DX Data Extractor
// CAN Bus Extractor Example Program
// Copyright 2006, CWAV All Rights Reserved.

[k ok ok ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok o ok Kk

"stdafx.h"
"stdio.h"
"conio.h"
"windows.h"
<fentl.h>
<io.h>
<stdlib.h>
<stdio.h>

#include
#include
#include
#include
#include
#include
#include
#include

#define MAJOR_REV 1
#define MINOR_REV 0

KK K o K KK K KK K KKK K KKK K KKK K K XK K K XK KKK KKK KK KX

// Declare the Extractor DLL API routines

[k o ok ke ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

#define CWAV_API _ stdcall
#define CWAV_IMPORT _ declspec(dllimport)

CWAV_IMPORT int CWAV_API StartExtraction(unsigned long PodNumber, unsigned long Speed,
unsigned char All, unsigned char Decimal, unsigned char Hex, unsigned char Binary, unsigned
char Comma, unsigned char Space, unsigned char Timestamps, unsigned long MaxID,unsigned
long MinID);
CWAV_IMPORT
CWAV_IMPORT
CWAV_IMPORT
CWAV_IMPORT

char CWAV_API GetNextData(unsigned char *buffer,
int CWAV_API StopExtraction(void);

char CWAV_API ExtractBufferOverflow(void);
unsigned long CWAV_API ExtractionBufferCount (void);

unsigned long length);

[K o K KK o K KKK K KK K KKK K KKK K K XK KKK R K KKK K KX

// Define the working buffer

[ok o ok ok e ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok Kk

#define WORKING_BUFFER_SIZE (65536*8)
unsigned char tempbuffer [WORKING BUFFER SIZE];

// Command Line Parameter Settings

unsigned long P_PodID = 0;

unsigned char O OutputFilename[256] = {0};

unsigned char S_Screen = FALSE;

unsigned char A_All = TRUE;

unsigned char B_DataOnly = FALSE;

unsigned char D DecimalTextValues = FALSE;

unsigned char H_HexTextValues = TRUE;

unsigned char I_BinaryValues = FALSE;

unsigned char C_CommaDelimited = FALSE;

unsigned char G_SpaceDelimited = FALSE;

unsigned long Q NumberOfBytes = 0;

unsigned long R_Speed = 250000;

unsigned long V_Timestamps = TRUE;

unsigned long M_ID = OxFFFFFFFF;

unsigned long N_ID = 0;

void DisplayHelp (void)

{
fprintf (stdout, "\nCANExtractor [-?SDHICGAB] [-R CANSpeed] [-Q NumberOfBytes] [-V

Timestamp] [-O filename] [-M MaxID] [-N MinID] -P PodID\n");
fprintf (stdout, "\n ? - Display this help screen\n");

fprintf (stdout, "\n
fprintf (stdout, "
fprintf (stdout, "\n

fprintf (stdout, "
fprintf (stdout, "

fprintf (stdout, "\n

USBee DX Pod to Use\n");
P - Pod ID (required)\n");

Output Location Flags\n");

O - Output to filename
S - Output to the screen

(default off)\n");
(default off)\n");

When to Quit Flags\n");

USBee DX Test Pod User’s Manual

295

fprintf (stdout, "

fprintf (stdout, "\n

fprintf (stdout, "

fprintf (stdout, "\n

fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "
fprintf (stdout, "

void Error (char *err)

fprintf (stderr, "Error:

o -

R -

ZR<OOQHTUOW®
|

Number of output values (default = until keypress)\n");

Input Format Flags\n");

Bus Speed in bits/second (default = 250000)\n");

Output Number Format Flags\n");

All Packet Fields are output (default)\n");
Only data bytes are output\n");

Decimal Text Values (\"49\")\n");

Hex Text Values (\"31\") default\n");

Binary Values (49)\n");

Comma Delimited\n");

Space Delimited (default)\n");

Timestamps (0=off (default),l=Timestamp on\n");
Maximum Identifier Filter\n");

Minimum Identifier Filter\n");

")

fprintf (stderr, "$s\n",err);

exit (2);

][k o ok ko ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kk ok ok Kk

// Parse all of the command line options
//**

void ParseCommandLine (int argc, char *argv[])

{
BOOL cont;
int i,3;

’
DWORD WordExample;

BYTE ByteExample;

for(i=1; i < argc; ++i)

{

if ((argv[i] [0) == '=') || (argv[i][0] == '/")
{
cont = TRUE;
for (j=l;argv[i] [J] && cont;++3) // Cont flag permits multiple commands

in a single argv (like -AR)
switch (toupper (argv[i] [§]1))

{

296

case

case

case

case

case

case

case

case

ipr.
P_PodID = (WORD)strtol (argv([++i],NULL,0);
cont = FALSE;

break;

ot

strcpy ((char*)O_OutputFilename, argv[++i]);
cont = FALSE;

break;

et

DisplayHelp () ;

exit (0);

break;

'St

S_Screen = TRUE;

break;

'A':

A All = TRUE;
B_DataOnly = FALSE;
break;

'B':

A All = FALSE;
B_DataOnly = TRUE;
break;

'D':

D DecimalTextValues = TRUE;
H_HexTextValues = FALSE;
break;

'H':

H_HexTextValues = TRUE;

USBee DX Test Pod User’s

Manual

break;

case 'I':
I_BinaryValues = TRUE;
H_HexTextValues = FALSE;
break;

case 'C':
C_CommaDelimited = TRUE;
G_SpaceDelimited = FALSE;

break;
case 'G':
G_SpaceDelimited = TRUE;
break;
case 'Q':
Q_NumberOfBytes = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'V':
V_Timestamps = (DWORD)strtol (argv([++i],NULL,0);
cont = FALSE;
break;
case 'R':
R_Speed = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'M':

M _ID = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;

break;
case 'N':
N_ID = (DWORD)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
case 'w':
WordExample = (DWORD)strtol (argv[++i],NULL,0);
cont = FALSE;
break;
case 'b':
ByteExample = (BYTE)strtol (argv[++i],NULL,O0);
cont = FALSE;
break;
default:
DisplayHelp () ;

fprintf (stdout, "\nCommand line switch %c not
recognized\n", toupper (argv[i] [j]));

Error ("Invalid Command Line Switch");

exit (0);

// Now check to see if they make sense
if (P_PodID == 0)
{

DisplayHelp () ;

Error ("No Pod Number Specified");

s

// Main Entry Point. The program starts here.
//**

int main(int argc, char* argvl[])
{
int RetValue;
unsigned long totalbytes = 0
char *outputstr = new char [
unsigned long ByteCounter =
unsigned long OutputValue;

256];
0

i
printf ("DX Data Extractor\n");
printf ("CAN Bus Extractor Version %d.%d\n", MAJOR REV, MINOR REV);

// Parse out the command line options
ParseCommandLine (argc, argv);

[K ok K K ok K KK o KK KK K KX K K XK K KKK KKK KX

USBee DX Test Pod User’s Manual 297

N_ID)

298

// Open up a file to store extracted data into
//**

FILE *fout;
if (O_OutputFilename[0])
{
if (I_BinaryValues)
fout = fopen((char*)0_OutputFilename, "wb");
else
fout = fopen((char*)0_OutputFilename, "w");
}

[k ok ok ok Kk ok Kk ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok Kk

// Start the DX Pod extracting the data we want
//**

int Endpoint = 999;
int Device = 999;

RetValue = StartExtraction(P_PodID, R_Speed, A_All, D_DecimalTextValues,
H HexTextValues, I_BinaryValues, C_CommaDelimited, G_SpaceDelimited, V_Timestamps, M_ID,

if (RetValue == 0)
{

printf ("Startup failed. Is the USBee DX connected and is the PodNumber
correct?\n");

printf ("Press any key to continue...");
getch () ;
return (0);

[K o K KK K KKK K KKK K KKK K KKK KK K XK K KKK K KKK K KX

// Loop and do something with the collected data

[k o ok ok ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok ok Kok ok ok Kk

char OldSignal = 99;

int KeepLooping = TRUE;

while (KeepLooping) // Do this forever until we tell it to stop by pressing a key
{
if (kbhit())
{
KeepLooping = FALSE; // Stop the processing loop
StopExtraction() ; // Stop the streaming of data from the USBee

}

[K K o K Kk o KKK o K KKK K KKK K K K XK KK K XK K K XK K KKK KK

// I1f there is data that has come in
N R R R R R R R R R]
int timeout = 0;
while (unsigned long length = ExtractionBufferCount())
{
if (length > WORKING_BUFFER_SIZE)
length = WORKING_BUFFER_SIZE;

[K ok K Kk o KKK K K KKK K KKK K KKK KK K XK K K XK KKK K KX

// Get the data into our local working buffer

s

GetNextData (tempbuffer, length);
totalbytes += length;

if (O_OutputFilename[0])

fwrite (tempbuffer, length, 1, fout); // Write it to a file

if (S_Screen)

fwrite (tempbuffer, length, 1, stdout); // Write it to the screen

if (Q_NumberOfBytes)

{
if (Q_NumberOfBytes <= length)
{

goto Done; // Done with that many bytes

}
Q NumberOfBytes -= length;

USBee DX Test Pod User’s Manual

if (timeout++ > 3) break; // Let up once in a while to let the OS process

}

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);

[k ok ke ok Kk ok Kk ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok K Kok ok ok Kk

// Check to see if we have fallen behind too far
//**

int y = ExtractBufferOverflow();

if (y == 1)
{

printf ("\nExtractor Buffer Overflow.\nYour data is streaming too fast for

your output settings.\nLower your data rate or change to output binary files.\n");

Done:

goto Done;
}
else if (y == 2)
{

printf ("\nRaw Sample Buffer Overflow.\nYour data is streaming too fast for
your output settings.\nLower your data rate or change to output binary files

goto Done;
}

[K o K KK K KK K KKK K KKK K KKK KK K XK KK K XK KKK KKK KK KX

// Give the 0S a little time to do something else

[k e ok ok o ok Kk o ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok ok Kk

Sleep(15);

if (!S_Screen)
printf ("\rProcessed %d output values.", totalbytes);
//**

// Close the file

s

if (O_OutputFilename[0])
fclose (fout);

K K o K Kk o KKK o K KKK K KKK K K KKK K K XK KK KKK K KKK K KX

// Stop the extraction process
//**

StopExtraction() ;

if (kbhit()) getch();

printf ("\nPress any key to continue...");
getch () ;

return 0;

USBee DX Test Pod User’s Manual

A\n");

299

Copyright 2008 CWAV. All Rights Reserved
Printed in the USA

Version 3.1

300 USBee DX Test Pod User’s Manual

