

USBEE RX

USERS MANUAL
Interworld Elecronics, Inc.

www.interworldna.com ‐ Distributor

http://interworldna.com/cwave/usbee_rx.php#Features

2 USBee RX User’s Manual

USBee RX User’s Manual 3

USBEE RX

USERS MANUAL

Interworld Inc.

www.interworlna.com

(877) 902‐2979

support@interworldna.com

4 USBee RX User’s Manual

USBee RX Suite License Agreement

The following License Agreement is a legal agreement between you (either an individual or entity), the end user, and CWAV, Inc.

makers of the USBee Test Pods and USBee RX Suite software. You have received or downloaded the USBee RX Suite Package

(“Software”), which consists of the USBee RX Suite Software and Documentation. If you do not agree to the terms of the agreement, do

not install and run this software.

By installing this USBee RX Suite software, you agree to be bound by the terms of this Agreement.

Grant of License

CWAV provides royalty-free Software, both in the USBee Package and on-line at www.usbee.com, for use with the USBee Test Pods and

grants you license to use this Software under the following conditions: a) You may use the USBee Software only in conjunction with a

USBee Test Pod, or in demonstration mode with no USBee Pod connected, b) You may not use this Software in conjunction with any

pod providing similar functionality made by other than CWAV, Inc, and c) You may not sell, rent, transfer or lease the Software to

another party.

Copyright

No part of the USBee Package (including but not limited to Software, manuals, labels, USBee Pod, or accompanying diskettes) may be

reproduced, stored in a retrieval system, or transcribed, in any form or by any means, electronic, mechanical, photocopying, recording

or otherwise, without the prior written permission of CWAV, Inc, with the sole exception of making backup copies of the Software for

restoration purposes on your own machine. You may not reverse engineer, decompile, disassemble, merge or alter the USBee Software

or USBee Pod in any way.

Limited Warranty

The USBee Software and related contents are provided “as is” without warranty of any kind, either expressed or implied, including but

not limited to the implied warranties of merchantability and fitness for a particular purpose, with the sole exception of manufacturing

failures in the USBee Pod or diskettes. CWAV warrants the USBee Pod and physical diskettes to be free from defects in materials and

workmanship for a period of 12 (twelve) months from the purchase date. If during this period a defect in the above should occur, the

defective item may be returned to the place of purchase for a replacement. After this period a nominal fee will be charged for

replacement parts. You may, however, return the entire USBee Package within 30 days from the date of purchase for any reason for a

full refund as long as the contents are in the same condition as when shipped to you. Damaged or incomplete USBee Packages will not

be refunded.

Software Updates

The information in the Software and Documentation is subject to change without notice and, except for the warranty, does not

represent a commitment on the part of CWAV. CWAV cannot be held liable for any mistakes in these items and reserves the right to

make changes to the product in order to make improvements at any time. The Software will change from time to time to add new

functionality, fix bugs and disable the use of non-CWAV made products that attempt to use this Software.

Liability

IN NO EVENT WILL CWAV BE LIABLE TO YOU FOR DAMAGES, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL, INCLUDING

DAMAGES FOR ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF THE USE OR

INABILITY TO USE SUCH USBEE POD, SOFTWARE AND DOCUMENTATION, EVEN IF CWAV HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES OR FOR ANY CLAIM BY ANY OTHER PARTY. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IN NO EVENT WILL

CWAV’S LIABILITY FOR DAMAGES TO YOU OR ANY OTHER PERSON EVER EXCEED THE AMOUNT OF THE PURCHASE PRICE PAID BY YOU

TO CWAV TO ACQUIRE THE USBEE, REGARDLESS OF THE FORM OF THE CLAIM.

Term

This license agreement is effective until terminated. You may terminate it at any time by returning the USBee Package (together with

the USBee Pod, Software and Documentation) to CWAV. It will also terminate upon conditions set forth elsewhere in this agreement or

if you fail to comply with any term or condition of this agreement. You agree that upon such termination you will return the USBee

Package, together with the USBee Pod, Software and Documentation, to CWAV.

USBee RX User’s Manual, Version 1.0

Copyright 2011 CWAV. All Rights Reserved

USBee RX User’s Manual 5

CONTENTS

INTRODUCING THE USBEE RX POD ... 11

THE USBEE RX TEST POD ... 13

PC SYSTEM REQUIREMENTS .. 15

EACH PACKAGE INCLUDES ... 15

INTRODUCING THE USBEE RX SUITE ... 17

USBEE RX SUITE OVERVIEW ... 17
See the information you want FAST! .. 18
Data Acquisition over USB 2.0 .. 18
Superior Quality Design - Professional Results ... 18
Fast and Detailed Waveform Viewing .. 18
Measure It .. 19
Fully configurable Look and Feel .. 19
Serial Bus Analysis .. 20
Data Storage ... 22
PacketPresenter.. 23
Fast Pan Bus Viewing .. 24
Smart Search ... 25
Sample and Smart Markers .. 25
Annotations and Sticky Notes ... 26
Acquisition Control ... 26
Display Modes .. 27
Analog Channels Scaling ... 27
USBee Suite Data File Importing ... 27
Browser-like Navigation .. 28
Complex Triggering ... 28
Relative Time Decode ... 29

USBEE RX CONTROL PANEL.. 30

QUICK START ... 31

PC SYSTEM REQUIREMENTS .. 31

SOFTWARE INSTALLATION ... 32

Detailed Software Installation .. 33

DEMO MODE ... 37

TESTING YOUR CIRCUIT USING THE USBEE RX ... 38

USING THE USBEE RX SUITE MIXED SIGNAL OSCILLOSCOPE 39

ANALYZER SETUP .. 39

Quick Setup Configuration .. 39

6 USBee RX User’s Manual

Signal Names .. 43

Buffer Sizes and Sample Rate settings .. 43

Setting Simple Triggers ... 44

Setting Complex Triggers .. 46

CAPTURING WAVEFORM DATA .. 47

VIEWING CAPTURED DATA .. 47

Scrolling, Zooming and Panning Waveforms .. 47

Modifying Wave lines ... 49

Decoding Bus Traffic Inline .. 51

Decoded Data List ... 54

Manual Measurements and Cursors ... 54

Insta-Measurements ... 55

BUS DECODING OPTIONS ... 56

CAN Bus Setup ... 56

USB Bus Setup ... 58

I2C Bus Setup .. 59

Async Bus Setup .. 60

Parallel Bus Setup ... 61

1-Wire Bus Setup ... 62

SPI Bus Setup ... 63

SM Bus Bus Setup .. 64

Serial Bus Setup ... 65

I2S Bus Setup ... 66

PS/2 Bus Setup .. 67

SETTING VIEWING PREFERENCES .. 68

Cursor Colors ... 68

Background Color .. 68

Glass Appearance ... 68

FILE OPERATIONS .. 69

Creating a New File ... 69

Saving a Capture File... 69

Open and Existing Capture File ... 69

Recently Used File List ... 69

Exporting Captured Data to a File ... 69
Export Signal Data to Binary File ... 70
Export Signal Data to Text/CSV File .. 71
Export Bus Data to Text/CSV File .. 71

PRINTING .. 72

CREATING SCREEN SHOTS ... 72

USBee RX User’s Manual 7

SOFTWARE UPDATES ... 72

DEVELOPING YOUR OWN CUSTOM DECODERS ... 73

Using the Custom Decoder .. 73

Building the Custom Decoder .. 75

Example Class Library Code... 76
Custom Decoder Parameters .. 79
Accessing Sample Data to Perform Decode .. 80

Outputting Entries that will get displayed on the Screen................................ 80

Changing the Background Color of Outputted Entries 81

SMART SEARCH .. 82

Adding a Search Line ... 82

Viewing Search Matches ... 83

Entering a Smart Search ... 84
Digital Signal Edges ... 85
Analog Signal Edges .. 86
Bus Data .. 87
Digital Signal States and Ranges ... 88
Analog Signal States and Ranges .. 90
Time Window Qualifier ... 92

FAST PAN BUS VIEWING ... 95

SAMPLE AND SMART MARKERS ... 96

Sample Markers .. 96

SMart Markers .. 97

ANNOTATIONS AND STICKY NOTES ... 98

Annotations... 99

Sticky Notes ... 100

ACQUISITION CONTROL .. 101

DISPLAY MODES ... 102

ANALOG CHANNELS SCALING .. 104

BROWSER-LIKE NAVIGATION ... 105

RELATIVE TIME DECODE ... 106

PACKETPRESENTER™ ... 108

Overview ... 108

Setting Up the PacketPresenter .. 110

Viewing the PacketPresenter Output .. 110

Saving PacketPresenter Data to Text or RTF Files ... 111

Copying PacketPresenter Output to Other Programs 112

Changing the PacketPresenter Size ... 114

Searching For Packets ... 115

Filtering Packets ... 116

8 USBee RX User’s Manual

Multiple Decode Display ... 117

PacketPresenter to Waveform Association ... 118

Cursors on the PacketPresenter Output .. 119

PacketPresenter Definition File Format .. 120
Comments in the PacketPresenter Definition File .. 120
Constants in the PacketPresenter Definition File ... 120
PacketPresenter Definition File Sections .. 121

Protocol Section .. 121
Byte-wise busses vs. Bit-wise busses ... 121
Bus Events .. 122
Data Channels and Multiple Data Signals .. 123
Packet Section ... 124

Start and End Sections .. 124
type = Next .. 124
type = Signal .. 125
type = Value .. 125
type = Length... 125
type = Event .. 126
type = Timeout .. 126
CHANNELX, CHANNELY or CHANNELXorY ... 127

Decode Section ... 127
Substitutions ... 128

Fields Section ... 128
Field Lines Processing ... 128

Unconditional Field Lines .. 129
Conditional Field Lines .. 129

Field Line Format .. 129
Field Format .. 129
Bus Events in the middle of a packet .. 130
Lookup Tables ... 131
Examples of Field Lines and Fields .. 131

Just Plain Data ... 131
Conditional Packet Format .. 132
String Lookup .. 133

Conditional Route of data to another Protocol ... 133
PacketPresenter Add-In API .. 134

Sample PacketPresenter Add-In Decoders ... 135
Loopback Decoder ... 135
Inverting Decoder .. 135
Expanding Decoder ... 135
Compressing Decoder ... 136
Multiple Decoders ... 137

USBee RX User’s Manual 9

PacketPresenter Definition File Debugging ... 137

PacketPresenter Specifications ... 138

Example Protocol Files and Output Examples ... 139
Async Protocol Example .. 139
I2C Protocol Example .. 140
SPI Protocol Example .. 141
CAN Protocol Example .. 143
1-Wire Protocol Example .. 144
Parallel Protocol Example ... 145
Serial Protocol Example .. 146
USB Protocol Example .. 147
PS2 Protocol Example ... 149

USBEE RX ANALOG SIGNAL GENERATOR .. 150

USBEE RX LOGIC PROBE AND DIGITAL VOLTAGE METER 152

USBEE DIGITAL LOGIC THRESHOLD ... 153

USBEE RX DIGITAL SIGNAL GENERATOR ... 154

PULSE WIDTH MODULATORS .. 154

ARBITRARY DIGITAL PATTERN GENERATOR ... 156

Specifying the Pattern With a CSV File .. 156

Sample Clocking .. 156

Waveform Generation Control .. 157

USBEE RX EDGE/PULSE COUNTERS... 158

USBEE RX FREQUENCY COUNTERS ... 159

GETTING HELP .. 160

10 USBee RX User’s Manual

USBee RX User’s Manual 11

INTRODUCING THE USBEE RX POD

The Tools You Need - All In One Place

Introducing the Ultimate PC-Based Programmable Multifunction Mixed Signal Oscilloscope - Logic

Analyzer with I2C, SPI, Async, SDIO, 1-Wire, CAN protocol decoders, Digital Signal Generators,

Frequency Counter and integrated Protocol Analyzers in a compact and easy to use USBee Test Pod.

Designed to Solve Your Toughest Problems

Using patented technology, the USBee RX has 2 analog and 18 digital channels, 100MHz sampling,

512 million bit internal buffers, Dual 10-bit ADC's, independent 100Msps 8 channel Digital Signal

Generator, 7Msps Analog Signal Generator, +/- 60V protection on all inputs, Variable Logic Thresholds

and USB overcurrent protection. And that's just the hardware.

Mixed-Signal Multi-level Protocol Decoding

Combined with the USBee RX Suite software, the USBee RX becomes a multi-layer protocol decoder

for many of today's serial and parallel busses, letting you debug at the waveform, bus data, or packet

level.

In-Field Upgradable System Supports Addition of New Features

Based on a proprietary design that allows the software, firmware and hardware to be dynamically

reconfigured using web-based software downloads, the USBee RX and its ever growing list of

Applications ensures that you will always have the most current tools available for years to come.

With a single USB connection to your laptop or PC, the USBee RX gives you the power to design,

prototype, test, and validate your mixed signal electronic designs with seamless ease. Built upon the

12 USBee RX User’s Manual

popular, award-winning and patented USBee mixed signal Oscilloscope, Logic Analyzer, Signal

Generator, and Protocol Analyzers, the USBee RX takes full advantage of the powerful debug

capabilities of the USBee RX Suite software to solve your problems fast!

The USBee RX Test Pod does not need an external power supply. The USB bus supplies the power to

the pod, so your PC will be supplying the power. The Pod does, however, require a self powered hub

(not bus powered) if a hub is used between the PC and Pod.

USBee RX User’s Manual 13

THE USBEE RX TEST POD

The USBee RX Test Pod has four sets of connectors:

 USB

o Connects to the PC via 6 foot USB cable

 CH1 and CH2

o Analog Input Channels

o BNC connectors for standard oscilloscope probes

o +/- 60V tolerant

 Outputs connector

o 11 pins – 1 Ground (GND), 1 Analog Aout, 1 +5V Supply, and 8 Digital Outputs

(D0-D7)

o 0.1” spaced 0.025” square header pins

o 8 Digital output pins (0-3.3V logic) – D0 – D7

o +5V output – actually VBus connected directly to the USB VBus signal from the

PC through a resettable fuse

o 1 Aout analog output pin used by the Analog Signal Generator function (0-3V

levels)

o Connects to 11x1 pin test lead set

 Digital Inputs Connector

o 20 pins (10x2) – 2 Ground (G), Clock Input (C), Trigger Input (T), and 16 Digital

inputs (0-F)

o 0.1” spaced 0.025” square header pins

o +/-60V tolerant inputs

o Connects to 10x2 pin test lead set

14 USBee RX User’s Manual

WARNING

IMPORTANT! - The USBee Test Pod can only be connected to a target circuit which has the same

ground reference level as your PC.

The USBee is NOT galvanically isolated. This mainly concerns systems where the target circuit AND

the PC are plugged into AC power outlets. If your target system OR the PC (Laptop) are battery

powered, there is no issue. If your PC and target circuit have different ground reference levels,

connecting them together using the USBee GND signal can damage the devices.

To ensure both your PC and target system share the same ground reference, do the following:

1. Use polarized power cords for both the PC and target and plug them into the same AC

circuit.

If you use non-polarized power cords or use separate power circuits, the PC and target

system may have different ground references which can damage the USBee, target and/or

PC.

2. Ensure that a GND signal on the USBee is connected to the target ground (and not another

voltage level).

Also,

As with all electronic equipment where you are working with live voltages, it is possible to hurt

yourself or damage equipment if not used properly. Although we have designed the USBee RX pod

for normal operating conditions, you can cause serious harm to humans and equipment by using the

pod in conditions for which it is not specified.

Specifically:

 ALWAYS connect at least one GND line to your circuits ground

 NEVER connect the digital signal lines (0 thru 7, TRG and CLK) to any voltage other than

between -60 to +60 Volts

 NEVER connect the analog signal lines (CH1 and CH2) to any voltage other than between -

60 and +60 Volts

 The USBee RX actively drives Pod signals D0 through D7 and AOUT. Make sure that these

pod test leads are either unconnected or connected to signals that are not also driving.

Connecting these signals to other active signals can cause damage to you, your circuit

under test or the USBee RX test pod, for which CWAV is not responsible.

 Plug in the USBee RX Pod into a powered PC BEFORE connecting the leads to your design.

USBee RX User’s Manual 15

PC SYSTEM REQUIREMENTS

The USBee RX Test Pod requires the following minimum PC features:

 Windows® XP, Vista or 7 32-bit or 64-bit operating system

 Pentium or higher processor

 One USB2.0 High Speed enabled port. It will not run on USB 1.1 Full Speed ports.

 32MBytes of RAM

 125MBytes of Hard disk space

 Internet Access (for software updates and technical support)

EACH PACKAGE INCLUDES

The USBee RX contains the following in each package:

 USBee RX Test Pod

 2 100MHz oscilloscope probes with x1 and x10 selection

 11 lead 9-inch signal generator cable set

 20 lead 9-inch logic analyzer cable set

 20 high performance micro grabber test clips

 6 foot USB cable

 USBee RX Suite Software (downloaded)

 USBee RX and USBee RX Suite Manuals (downloaded)

16 USBee RX User’s Manual

USBee RX User’s Manual 17

INTRODUCING THE USBEE RX SUITE

The USBee RX Suite is powerful electronic signal analysis software for your USBee RX Test Pod. It

starts out as an easy to use Logic Analyzer, Oscilloscope, Signal Generator, Frequency Counter and

PWM Controller and adds serial bus decoding and world class configurability that lets you solve your

electronic problems quickly! This chapter details the operation of the USBee RX Test Pod running the

USBee RX Suite software.

USBEE RX SUITE OVERVIEW

The USBee RX Suite is a powerful mixed signal analyzer that on the USBee RX Test Pod. It is available

for free from USBee.com and will run without restriction.

The USBee RX Suite Standard will run in Demo mode without a USBee, or on any USBee RX Test Pod.

It will not work on any other USBee test Pod model.

18 USBee RX User’s Manual

USBee RX Control Panel Visible

SEE THE INFORMATION YOU WANT FAST!

Setup of the USBee RX Suite is fast! Capturing the data you need to solve your problems is just as

fast. You can see your design in action with just one click thanks to the easy to use trigger settings,

color coded signals and automatic buffer and sample rate settings.

DATA ACQUISITION OVER USB 2.0

Capture up to 100 million bytes per second for sample buffer depths of up to 16 million samples or 8

million transitions.

SUPERIOR QUALITY DESIGN - PROFESSIONAL RESULTS

The USBee RX Suite takes full advantage of the power the USBee RX Test Pod. Each USBee RX comes

with the best color coded highly flexible test leads, the best test clips and our signature small and

sleek design that can fit right in your pocket. We are proud to say the entire USBee product line is

designed and manufactured in the USA!

FAST AND DETAILED WAVEFORM VIEWING

USBee RX User’s Manual 19

The USBee RX Suite lets you capture a huge amount of data. Go exactly to the section of that data

you want using the Quick Zoom with your mouse scroll wheel, or use the Overview bar to rip through

your millions of samples or hone in on a specific section.

MEASURE IT

Should that pulse be 10ms? Measure it using our super easy edge snapping timing cursors. Better

yet, you can use our Insta-Measure feature to instantly calculate the width, period, frequency and

duty cycle of the waveform under the cursor.

FULLY CONFIGURABLE LOOK AND FEEL

View your signals like you like them. Want to add decoded bus traffic to the waveforms? Done!

Want to delete waves from the screen? Done! Want to reorder waveforms for easier readability?

 Done! Want to resize the screen for easier reading or more data per screen? Done!

And you like Magenta? Well you can change cursor colors to suite your desires. Waveform

backgrounds can also be customized, and you can even give the entire application that cool Glassy

look that Vista has made so popular. Then again, if you like simple, white and black are also available.

 It's good that white ink cartridges are free!

20 USBee RX User’s Manual

USBee RX Suite showing SPI, I2C and Async decoding

SERIAL BUS ANALYSIS

USBee RX Suite has decoding support for your favorite serial busses such as I2C, SPI and Async. Bus

traffic is decoded in-line with the waveforms and can be displayed on top of, underneath, or instead

of the voltage versus time waveform. Just place the cursor over the decoded traffic and get a see-

through image that shows you the wiggles that made that byte!

I2C Transaction

USB Transaction

USBee RX User’s Manual 21

Synchronous Serial Transaction

PS2 Transaction

Parallel Bus Decode

I2S Decode

CAN Transaction

22 USBee RX User’s Manual

Serial Bus Setup is simple and straightforward - simply choose the signals for the bus and set how the

bus is configured. Not sure how your design works? Not a problem. You can try different

configuration settings and the busses will be decoded using those settings on the fly so you can get it

right!

(USBee SX options shown above)

DATA STORAGE

Save your entire data capture to file quickly using the USBee RX Suite data format to be read back in

later for viewing. Or you can export your captured data to data files that you can work with. Want to

import your waveform data into Excel? No problem! Just export it as a comma separated file and it

imports directly without modification. Need the data in raw binary format? We've got that too!

USBee RX User’s Manual 23

PACKETPRESENTER

The USBee RX Suite adds the PacketPresenter™ feature that runs alongside of the existing bus

decoders. The PacketPresenter™ takes the output of raw binary data from the bus decoders and

parses the stream according to users PacketPresenter Definition File for the intent of displaying the

communications in easily understood graphical displays.

24 USBee RX User’s Manual

FAST PAN BUS VIEWING

The USBee RX Suite Fast Pan Bus Viewing lets you quickly pan through a busses decoded data. For

each bus there is a left and right pan button on the left side of the screen. Simply press these buttons

to page to the next or previous bus transactions.

USBee RX User’s Manual 25

SMART SEARCH

USBee RX Suite Smart Search highlights the sections of your trace matching your areas of interest so

that you don’t need to waste time hunting for the data you need.

You can specify up to 32 levels of search events that are any combination of bus decoded traffic,

states or edges of digital or analog signals, inside or outside of analog voltage ranges and/or digital

ranges, and all validated by time specific windows.

Once specified you can pan through the occurrences of your searched items with the click of the

mouse and see the total number of times the searched events occur.

SAMPLE AND SMART MARKERS

Placing markers in your traces can help detail what is happening in your design. There are two types

of markers that can be used. The first marker type locks itself to a sample on a waveform and lets

you specify the text. The second is a Smart Marker that automatically measures the pulse width,

frequency, period or duty cycle of the waveform at the marker location.

26 USBee RX User’s Manual

ANNOTATIONS AND STICKY NOTES

The USBee RX Suite adds Sticky Notes which you can use to further detail your traces for

documentation purposes. You can also add Title and Footer text to your display that is saved with the

trace file.

ACQUISITION CONTROL

The USBee RX Suite adds more trace acquisition and triggering controls such as Normal Mode,

Automatic Mode, Single Capture and Multiple Capture.

Normal mode will wait for the trigger event to occur before capturing. Automatic Mode will wait a

set time for the trigger and will automatically trigger if it is not found.

Single Capture mode performs a one-shot capture of the signals. Multiple Capture repeatedly

captures and displays the signals.

USBee RX User’s Manual 27

DISPLAY MODES

The USBee RX Suite lets you widen the trace waveforms, display the analog waveforms as vectors or

single sample points, and persist the display from one trace to the next.

ANALOG CHANNELS SCALING

The USBee RX Suite provides a scaling ability to convert the analog voltages into other units of

measurement.

USBEE SUITE DATA FILE IMPORTING

28 USBee RX User’s Manual

The USBee DX, AX or ZX running the USBee Suite software saves files in their own file format. These

older files can be imported into the USBee RX Suite.

BROWSER-LIKE NAVIGATION

The USBee RX Suite adds browser-like Forward and Back buttons that let you quickly navigate

through your trace display.

COMPLEX TRIGGERING

The USBee RX Suite adds a multi-level hardware trigger to capture the events you need to see to

solve your problems.

USBee RX User’s Manual 29

RELATIVE TIME DECODE

The USBee RX Suite also adds a Relative Time or Absolute Time setting for the decoded data lists.

30 USBee RX User’s Manual

USBEE RX CONTROL PANEL

The USBee RX Suite contains a USBee RX Control Panel that controls many of the features of the

USBee RX system, including the Variable Logic Threshold, Analog channel scaling, Current Logic and

Analog levels, Analog Signal Generator, Digital Signal Generator, PWM controllers, Pulse Counters

and Frequency Counters.

USBee RX User’s Manual 31

QUICK START

This section goes through installing the software for your USBee RX and getting you using the USBee

RX quickly.

PC SYSTEM REQUIREMENTS

The USBee RX Suite requires the following minimum PC features:

 Windows® XP SP3, Vista or Windows 7 32-bit or 64-bit operating system

 .NET Framework 4.0 or greater. This is installed automatically during installation if not

already on your PC.

 Pentium or higher processor

 One USB2.0 High Speed enabled port. It will not run on USB 1.1 Full Speed ports.

 32MBytes of RAM

 125MBytes of Hard disk space

 Internet Access (for software updates and technical support)

32 USBee RX User’s Manual

SOFTWARE INSTALLATION

To ensure that you are using the latest version of USBee RX software, you can download the software

from our web site at www.usbee.com. You must install the software on the PC before you plug in the

USBee RX device.

A quick guide to install the software follows:

 Download the USBee RX Software from http://www.usbee.com/download.htm and open

the usbeerxsuitesw.zip file.

 Run the SETUP.EXE.

 Follow the instructions on the screen to install the USBee RX software on your hard drive.

This may take several minutes.

 Now, plug a USB A to USB Mini-B cable into the USBee RX and the other end into a free

USB 2.0 High Speed port on your computer.

 You will see a dialog box indicating that it found new hardware and is installing the

software for it. Follow the on screen directions to finish the driver install.

 The USBee RX Software is now installed.

 Run the USBee RX Suite software by going to the Start | Program Files |USBee RX Suite.

 If your PC does not already have .NET Frameworks version 4.0 or greater, you will be

notified to download and install this from the Microsoft web site.

http://www.usbee.com/
http://www.usbee.com/download.htm

USBee RX User’s Manual 33

DETAILED SOFTWARE INSTALLATION

The USBee RX Suite software is available for download from www.usbee.com/download.htm. It will

run in a demonstration mode if you do not have a USBee RX Pod installed and attached. To install the

software for demo purposes, just install the USBee RX Suite software.

To install the USBee RX Suite software:

 Click the USBee RX Suite Software link at http://www.usbee.com/download.htm and click

SAVE to save the software to a known directory.

 Open the ZIP file you just downloaded by clicking OPEN.

 If you receive messages such as below, press ALLOW or CONTINUE ANYWAY to continue

with installation of the software.

http://www.usbee.com/download.htm
http://www.usbee.com/download.htm

34 USBee RX User’s Manual

 Run the SETUP.EXE file that is included in the ZIP file that you downloaded to start the

installation..

 If you get the following warning, click RUN to continue with the installation.

USBee RX User’s Manual 35

 The first part of the installation installs Microsoft requirements, including Microsoft .NET

Frameworks Version 4.0. If you do not have this on your PC it will install it for you as

shown below – click Accept to install the .NET Frameworks. This installation takes a LONG

time, so please be patient since it is worth the wait! If you already have it installed, you

will automatically see the “Welcome to the USBee RX Suite Setup Wizard” screen.

 You will see the Welcome to the USBee RX Suite Setup Wizard screen as shown below

 During the installation you will see a driver installation dialog box that will install the

USBee RX drivers. Click Finish to complete the installation after the drivers have been

successfully installed as below.

36 USBee RX User’s Manual

 Follow the instructions (clicking NEXT each time) on the screen to install the USBee RX

Suite software on your hard drive. This may take several minutes. When completed you

will see the following screen.

 Click CLOSE and the USBee RX Suite software is now installed.

 To run the USBee RX Suite software, choose the USBee RX Suite icon from the Windows

Start Menu or click on the USBee RX icon on the desktop. If no USBee RX is plugged in or

installed, you will see the following screen running in Demo Mode (see the top title bar).

USBee RX User’s Manual 37

 If you have a USBee RX plugged in and installed correctly, you will see a screen with all

available channels shown. Below is the USBee RX version showing 16 digital channels and

2 analog channels. You can also see that the device is connect (and not in demo mode) in

the top title bar.

DEMO MODE

In the Demo mode, you can see an example trace capture by clicking the Demo button. This loads a

trace that includes a number of serial busses and lets you see how the USBee RX Suite can decode the

bus traffic, manipulate the waveform data, and use the features of the USBee RX Suite.

The USBee RX Suite display shows the USBee connection status in the title bar of the application.

When a USBee RX is connected to the computer when the application starts, the title bar indicates

the connection status.

If you run the software with no pod attached, it will run in demonstration mode and simulate data so

that you can still see how the software functions.

If you are running in Demo mode and you want to connect to your USBee RX pod, you must exit the

USBee RX Suite, connect the USBee RX and then rerun the USBee RX Suite software.

38 USBee RX User’s Manual

TESTING YOUR CIRCUIT USING THE USBEE RX

In order to quickly get up and running using The USBee RX Suite application, here is a step by step list

of the things you need to do to view a waveform trace, after you have installed the software and

hardware.

 Plug in the USBee RX Pod - Plug the USBee into your computer USB High Speed port

 Connect Ground - Connect the GND wire to the Ground of your circuit you would like to

test. You can either use the socket to plug onto a header post, or connect it to one of the

mini-grabber clips and then attach it to the Ground.

 Connect Signals - Connect any of the USBee inputs on the USBee pod to your circuit you

would like to test. You can either use the socket to plug onto a header post, or connect it

to one of the mini-grabber clips and then attach it to your signal of choice.

 Run USBee RX Suite - Run the USBee RX Suite Application from the Start Menu.

 Press the Capture Once button - This will capture and display the current activity on all of

the signals.

 View the Waveforms - You can then scroll the display, either by using the slider bars, or by

clicking and dragging on the waveform itself. You can also change the knobs to zoom the

waveform.

 Make Measurements - You can make simple measurements by using the Cursors area

(gray bars under the waves). Click the left mouse button to place one cursor and click the

right mouse button to place the second. The resulting measurements are then displayed

in the Measurements section of the display.

USBee RX User’s Manual 39

USING THE USBEE RX SUITE MIXED SIGNAL OSCILLOSCOPE

This section details the operation of the Mixed Signal Oscilloscope, Logic Analyzer and Protocol

Analyzer features of the USBee RX Suite application that runs on the USBee RX Test Pod.

When the USBee RX Suite is first run, you will see a screen containing all of the available input signals

for the USBee RX Pod plugged into the PC.

The USBee RX Suite maintains its last configuration and will reload that configuration when it is run

again. This configuration is located in your \Users\NAME\AppData\Local\USBeeSuite directory where

NAME is your username. To reset the software to the initial state you can delete the files in that

directory.

ANALYZER SETUP

QUICK SETUP CONFIGURATION

The USBee RX Suite can capture all of the input channels on the USBee RX. With a RX plugged in, it

can capture 18 channels of digital (16 data lines, Clock and Trigger signals) and 2 channels of analog at

the same time.

Although you can individually show each signal, there are a number of Quick Configurations that let

you instantly select just the channels you need.

To select a configuration, click Setup on the menu and select the Quick Setup configuration of your

choice. Below shows the available Quick Setup options for the USBee RX.

40 USBee RX User’s Manual

You can also select these modes using the buttons at the bottom of the screen:

The FAST button sets the Sample Rate and buffer size to give the fastest screen update rates.

Below are examples of the application in various modes.

16 Digital–2 Analog Channels 8 Digital–0 Analog Channels

USBee RX User’s Manual 41

8 Digital–1 Analog Channels 0 Digital–2 Analog Channels

There are also three other Quick Setup features that let you instantly setup an I2C, SPI or ASYNC

decoder line.

The Quick Setup – SPI configures the first 4 lines to be an SPI bus with the SS, SCK, MOSI and MISO

lines. It also adds a decoder line to the screen with this data decoded as below.

The Quick Setup – I2C configures the signals 4 and 5 to be an I2C bus with the SDA and SCL lines. It

also adds a decoder line to the screen with this data decoded as below.

42 USBee RX User’s Manual

The Quick Setup – ASYNC configures the signals 6 and 7 to be a full duplex ASYNC bus with the TX

and RX lines. You will need to change the baud rate, data bits and parity to match your bus. It also

adds a decoder line to the screen with this data decoded as below.

USBee RX User’s Manual 43

SIGNAL NAMES

To change the names shown for a signal, click on the signal name and enter a new name.

BUFFER SIZES AND SAMPLE RATE SETTINGS

The USBEE RX SUITE captures the behavior of the digital and analog signals and displays them as

“traces” in the waveform window. The Speed and Samples menu lets you choose how the traces are

captured. Below shows the Speed and Samples menu.

The Buffer Size lets you select the size of the Sample Buffer that is used. For each trace, the buffer is

completely filled, and then the waveform is displayed. You can choose buffers that will capture the

information that you want to see, but remember that the larger the buffer, the longer it will take to

fill, display and decode.

You can also choose the Sample Rate that you want samples taken. You can choose from 100ksps

(samples per second) to up to 100 Msps.

The USBee RX can use sample compression to lengthen the capture time. In Sample Compression

mode, only the transitions are stored, effectively removing the samples between inactivity. To turn

on Sample Compression, select Sample Compression On in the Speed and Samples menu.

The Sample Compression works on just the channels that are shown on the screen, so for the longest

trace buffers, only display the signals that you are interested in. All other channels will be masked

out and not captured.

You can also use an external clock (using the C input) to gather each sample instead of the internal

sample clock. To turn on External Clocking, select External Clocking using the C Input on the Speed

and Samples menu. The external clock can run up to 50MHz. When external Clocking is enabled,

Sample Compression is not available.

44 USBee RX User’s Manual

SETTING SIMPLE TRIGGERS

The USBee RX Suite uses a Trigger mechanism to allow you to capture just the data that you want to

see.

For a Digital trigger, you can specify the digital states for any of the digital signals that must be

present on the digital lines before it will trigger. Below shows the trigger settings (to the right of the

Signal labels). This example shows that we want to trigger on a falling edge of Signal 0, which is

represented by a high level followed by a low level. To change the level of any of the trigger settings,

just click the level button to change from don’t care to rising edge to falling edge.

The waveforms are shown with a trigger position which represents where the trigger occurred. This

sample point is marked on the waveform display with a Vertical red cursor line and a “T” in the

horizontal cursors bar.

You can use the Trigger Position menu setting to specify how much of the data that is in the sample

buffer comes before the actual trigger position. If you place the Trigger Position all the way to the

left, most of the samples taken will be after the trigger sample. If you place Trigger Position all the

way to the right, most of the samples taken will be before the Trigger sample. This control lets you

see what actually happened way before or way after the trigger occurred.

USBee RX User’s Manual 45

Trigger Position to the Right Trigger Position to the Left

For an Analog trigger you must specify the Channel to use, Rising or Falling Edge, and the Trigger

Level. Click on the Trigger Settings Box (to the right of the waveline delete “X”) repeatedly to toggle

through Channel 1 Rising, Channel 1 Falling, Channel 2 Rising, Channel 2 Falling and None. You then

specify the trigger voltage level (-6V to +6V) by using the vertical slider on the left hand side of the

analog waveform display. The trigger level edge and value will be shown as you scroll this level

underneath the Volts/Div and Secs/Div labels within the waveform area.

For an analog trigger, the trigger position is where the waveform crossed the Trigger Voltage level

that you have set at the specified slope. To move the trigger voltage level, just move the slider on the

left of the waveform.

The following figures show a trace captured on each of the edges.

Analog Trigger Slope = Rising Edge Analog Trigger Slope = Falling Edge

46 USBee RX User’s Manual

The Trigger position is placed where the actual signal crosses the trigger voltage with the proper

slope. The USBee pods allow for huge sample buffers, which means that you can capture much more

data than can be shown on a single screen. Therefore you can scroll the waveform back and forth on

the display to see what happened before or after the trigger.

SETTING COMPLEX TRIGGERS

The USBee RX Suite also allows you to set more complex triggers using the Triggers Dialog box as

shown below.

There are two levels of triggers available, X and Y. Each trigger event (X or Y) can have any

combination of analog or digital edges which can be qualified using digital patterns or analog voltage

levels.

USBee RX User’s Manual 47

CAPTURING WAVEFORM DATA

Press the Capture buttons to start capturing the waveform data from your hardware design. If you

are running in Demo mode, the button reads Demo. Capture Once performs a single capture, while

Capture Many repeatedly captures and displays consecutive traces.

Each capture will look for the trigger condition, fill the buffer with samples of the signals and stop. If

you would like to stop the capture before it is completed just press the same button again (which

reads STOP during a capture). After a trace is captured, the waveform data is gathered, decoded (if

needed) and displayed in the waveform window.

VIEWING CAPTURED DATA

SCROLLING, ZOOMING AND PANNING WAVEFORMS

The Waveform display area is where the measured signal information is shown. It is displayed with

time increasing from left to right and voltage increasing from bottom to top.

48 USBee RX User’s Manual

The position of the waveform defaults to show the actual trigger position in the center of the screen

after a capture. However, you can move the display to see what happened before or after the trigger

position.

To Scroll the Waveforms in Time left and right, you can click on the overview bar above the knobs,

scroll the Pan knob (click and drag or mouse wheel on the knob) or you can simply click and drag the

waveform itself with the left mouse button.

To Scroll the Analog Waveform in Voltage up and down, you can simply click and drag the waveform

itself by selecting and dragging using the mouse or use the analog offset knob to the left of the

analog waveforms.

To Zoom In or Zoom Out, or other words change the number of Seconds per Division, you can use

the scroll wheel or single click on the waveform. You can also use the Zoom knob (click and drag or

mouse wheel on the knob). To zoom in, scroll up or click the left mouse on the waveform window.

To zoom out in time, scroll down or click the right mouse button on the waveform window.

USBee RX User’s Manual 49

 To change the number of Volts per Division for an analog channel, use the V/div knob (click and drag

or mouse wheel on the knob)highlight the channel you want to change, or you can hold the left

mouse button down and use the scroll wheel. You can also highlight the signal and use the slider bar

to the left of the waveform.

To view the entire capture buffer on the display, press the All button. The screen below shows all of

the collected samples on a single screen for that trace.

To Stretch and Shrink the display, you can click and drag the edges of the application to the size you

want. All waves will scale to fit. Below you see two examples of different size displays.

MODIFYING WAVE LINES

Each line on the display is called a Waveline. Wavelines can be modified to your liking so that you

see the data you need to solve your problem. You can delete, add, move, or reconfigure any

waveline.

To Delete a Waveline from the screen, press the little X near the signal name. This will remove the

waveline from the screen. Below shows the USBee RX Suite after deleting the Digital 2 waveline.

50 USBee RX User’s Manual

Removing a signal from the screen may not remove the signal from subsequent captures. Signals will

only be eliminated from captures if all signals from a given byte lane are removed.

To Move a Waveline, simply click on the gray tab on the left and drag it to the new position. Below

shows the Digital 0 signal moved to the bottom.

To Add a Waveline, click on the small + sign above where you want to insert the new waveline.

Below you see a new waveline inserted after the first waveline.

When you insert a new waveline the Channel Selection dialog box appears for you to choose the

settings for that waveline. Below shows the Channel Settings Dialog Box.

USBee RX User’s Manual 51

Once you select the properties of the new waveline, it will be displayed with the other signals. Below

shows a new line added that shows the Digital 2 single signal.

We will go through creating Bus wavelines that decode bus traffic in-line in the next section.

To Modify an Existing Waveline click on the grey tab on the left of the waveline. This will bring up

the Channel Settings dialog box and allow you to change the settings for that line. Below we

modified the last line to show Digital 2 signal instead of the Digital 0 signal.

DECODING BUS TRAFFIC INLINE

The USBee RX Suite software can decode certain types of serial busses automatically and display that

information in-line with the waveforms. Below is an example of a screen that shows 3 different serial

bus decoders at the same time, one SPI, one I2C, and one full duplex ASYNC channel.

52 USBee RX User’s Manual

We will go through an example that shows how to setup various busses. We start with a capture of 8

digital lines that have a number of busses included.

In this example, we will name the bus signals first to make it easier to reference.

USBee RX User’s Manual 53

Now we will add an SPI bus which is made up of the first 4 signals. We press the small + sign near the

MISO label to insert the waveline below that line. We then get the Channel Settings Dialog and

choose the SPI tab. The following screen is then displayed.

From here we select the parameters for this bus (shown above) and press Save. Once we press Save,

the line is added to the screen, the current trace is decoded, and the decoded information is shown

on the waveline.

We then add the I2C bus using the Channel Settings dialog box as below with the resulting waveline.

We then add the Async bus using the Channel Settings dialog box as below with the resulting

waveline.

54 USBee RX User’s Manual

Each bus type has various parameters that can be tailored to get the data out of your bus the way

you need it.

DECODED DATA LIST

You can see the decoded list data in vertical format using the View/Show Decode Bus Listing menu

item. This opens a window on the right side of the screen that displays the decoded data in vertical

format. The data shown is the data that is decoded from the left side of the waveform screen. This

data is synchronized to the waveforms as you pan and zoom.

You can hide or change the width of the Decoded Bus Listing window by clicking and dragging the

vertical line to the left of the window.

MANUAL MEASUREMENTS AND CURSORS

The main reason for using an oscilloscope or logic analyzer is to measure the various parts of a

waveform. The USBee RX Suite uses cursors to help in these measurements.

USBee RX User’s Manual 55

The X1 and X2 Cursors are placed on any horizontal sample time. This lets you measure the time at a

specific location or the time between the two cursors. To place the X cursors, move the mouse to the

gray Cursors box just below the waveform. When you move the mouse in this window, you will see a

temporary line that indicates where the cursors will be placed. Place the X1 cursor by left clicking the

mouse at the current location. Place the X2 cursor by right clicking the mouse at the current location.

These cursors will snap to the exact edge of a digital signal when the mouse moves close to the edge.

This lets you easily get exact measurements between edges of signals.

In the Measurement window, you will see the various measurements made off of these cursors.

 X1 Position – time at the X1 cursor relative to the trigger position

 X2 Position – time at the X2 cursor relative to the trigger position

 dX – time difference between X1 and X2 cursors

 1/dX – the frequency computed using the period between X1 and X2 cursors

INSTA-MEASUREMENTS

The Insta-Measure feature lets you quickly and accurately measure events and levels by simply

hovering the mouse over a signal and without placing cursors.

Inta-Measurements available are as follows:

Analog Insta-Measurements

 Voltage At Cursor

Digital Insta-Measurements

 Width, Period, Frequency and Duty Cycle

56 USBee RX User’s Manual

BUS DECODING OPTIONS

The USBee RX Suite software has a powerful embedded bus decoder feature that allows you to

quickly analyze the contents of embedded communications captured by the pod. This section details

each of the available bus types and the parameters required for proper setup.

CAN BUS SETUP

The CAN Bus Decoder takes the captured data from a CAN bus (11 or 29-bit identifier supported),

formats it and allows you to save the data to disk or export it to another application using Cut and

Paste.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The CAN Bus Decoder connects to the digital side of your CAN bus transceiver and only needs to

listen to the receiving side of the transceiver (such as the RxD pin on the Microchip MCP2551 CAN

bus transceiver chip). Use signal 0 as the RxD data line and connect the GND line to the digital ground

of your system. Connect these signals to the CAN bus transceiver IC using the test clips provided.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

USBee RX User’s Manual 57

On the above dialog box, select the CAN data signal, what speed the bus is operating at and what

filter value for the ID you want (if any)

The bus traffic will be decoded as in the following screen.

58 USBee RX User’s Manual

USB BUS SETUP

The USB Bus Decoder decodes Low and Full Speed USB. It does NOT decode High Speed USB. To

decode Full Speed USB, the sample rate must be 24Msps, meaning you must sample with just 8

digital channels only. To decode Low Speed USB, you can sample as low as 3Msps.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee RX Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

Connect two of the digital signals to the D+ and D- of your embedded USB bus, preferably at the IC of

the USB device or the connector that the USB cable plugs into.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the D+ and D- signals and what speed the bus is operating at. You can

also specify a specific USB Address or Endpoint you want to see. All other transactions will be filtered

out. Leave the fields blank to see all transactions.

The bus traffic will be decoded as in the following screen.

USBee RX User’s Manual 59

I2C BUS SETUP

The I2C Bus Decoder takes the captured data from a I2C bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The I2C Bus Decoder connects to the SDA and SCL lines of the I2C bus. Use one signal as the SDA data

line and one signal as the SCL clock line. Also connect the GND line to the digital ground of your

system. Connect these signals to the I2C bus using the test clips provided.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the SDA and SCL signals.

The bus traffic will be decoded as in the following screen.

60 USBee RX User’s Manual

ASYNC BUS SETUP

The Async Bus Decoder takes the captured data from an asynchronous bus (UART).

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The Async Bus Data decoder uses one or more of the 16 digital signal lines (0 thru F) and the GND

(ground) line. Connect any of the 16 signal lines to an Async data bus. Connect the GND line to the

digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the channels you want to observe. Each channel can be attached to a

different async channel. Also enter the baud rate (from 1 to 24000000), the number of data and

parity bits, and what output format you want the traffic.

USBee RX User’s Manual 61

PARALLEL BUS SETUP

The Parallel Bus Decoder takes the captured data from a parallel bus. The Parallel Bus decoder is also

a way to capture the data using an external clock.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The Parallel Bus Data decoder uses the 16 digital signal lines (0 thru F), the GND (ground) line.

Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names

on the main application screen.

On the above dialog box, select the channels you want to include in the parallel data bus. You can

also use any one of the 16 digital signals as an external clock. Choose if you want to use the external

clock signal and the external clock edge polarity.

The bus traffic will be decoded as in the following screen.

62 USBee RX User’s Manual

1-WIRE BUS SETUP

The 1-Wire Bus Decoder takes the captured data from a 1-Wire bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The 1-Wire Bus Data decoder uses any one of the 16 digital signal lines (0 thru F), the GND (ground)

line. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the signal running your 1-Wire protocol.

USBee RX User’s Manual 63

SPI BUS SETUP

The SPI Bus Decoder takes the captured data from an SPI bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The SPI Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the SS (slave select), SCK

(clock), MISO (data in), MOSI (data out), and the GND (ground) line. Connect the SS, SCK, MISO, and

MOSI to your digital bus using the test leads and clips. Connect the GND line to the digital ground of

your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the signals you plan to use for the SPI protocol. Also set the

appropriate sampling edges for both data lines and if you would like to use the SS (slave select) signal.

If you turn off the SS, all clocks are considered valid data bits starting at the first clock detected. Also

choose what output format you want the traffic.

The bus traffic will be decoded as in the following screen.

64 USBee RX User’s Manual

SM BUS BUS SETUP

The SM Bus Decoder takes the captured data from an SM bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The SM Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the SM Clock and SM

Data, and the GND (ground) line. Connect the SM Clock and SM Data to your digital bus using the test

leads and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names

on the main application screen.

On the above dialog box, select the signals you plan to use for the SM Bus protocol.

The bus traffic will be decoded as in the following screen.

USBee RX User’s Manual 65

SERIAL BUS SETUP

The Serial Bus Decoder takes the captured data from a Serial bus. The serial data can be from any

clocked serial bus and can be aligned using a hardware signal or an embedded sync word.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The Serial Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock, Data and

optional Word Align signal, and the GND (ground) line. Connect the Clock, Data and Word Align to

your digital bus using the test leads and clips. Connect the GND line to the digital ground of your

system.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box on the left of the signal names

on the main application screen.

On the above dialog box, select the signals you plan to use for the Serial Bus protocol. Select whether

you have an external word align signal (Align Mode = Signal) or if your serial data has an embedded

sync word in the data stream (Align Mode = Value). The Bits/Word is the size of the Sync word as

well as the output word size. Choose the bit ordering as well as the output format of the traffic.

The bus traffic will be decoded as in the following screen.

66 USBee RX User’s Manual

I2S BUS SETUP

The I2S Bus Decoder takes the captured data from an I2S bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The I2S Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock, Data and Word

Align signal, and the GND (ground) line. Connect the Clock, Data and Word Align to your digital bus

using the test leads and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the signals you plan to use for the I2S Bus protocol. Select the start

edge for the external word align signal, the Bits/Word and the Clock sampling edge. Choose the bit

ordering.

The bus traffic will be decoded as in the following screen.

USBee RX User’s Manual 67

PS/2 BUS SETUP

The PS/2 Bus Decoder takes the captured data from an PS/2 bus.

Hardware Setup

To use the Decoder you need to connect the USBee Test Pod to your hardware using the test leads.

You can either connect the test leads directly to pin headers on your board, or use the test clips for

attaching to your components.

Please note that the USBee Test Pod digital inputs are strictly 0-5V levels. Any voltage outside this

range on the signals will damage the pod and may damage your hardware. If your system uses

different voltage levels, you must buffer the signals externally to the USBee Test Pod before

connecting the signals to the unit.

The PS/2 Bus Decoder uses any one of the 16 digital signal lines (0 thru F) for the Clock and Data

signals, and the GND (ground) line. Connect the Clock and Data to your PS/2 bus using the test leads

and clips. Connect the GND line to the digital ground of your system.

Software Setup

Activate the below Channel Settings Dialog by clicking the grey tab on the left of the signal names on

the main application screen.

On the above dialog box, select the signals you plan to use for the PS/2 Bus protocol.

The bus traffic will be decoded as in the following screen.

68 USBee RX User’s Manual

SETTING VIEWING PREFERENCES

The USBee RX Suite has many ways that you can customize the display of your data, beyond the

placement of the waveforms.

CURSOR COLORS

You can change the color of the Trigger, X1 and X2 cursors using the View Menu. When chosen you

will see the Color Selection dialog box below. To change the colors back to their original state, use

the View/Reset Colors To Default menu item.

BACKGROUND COLOR

The background of the waveform screen can be set to white or black using the View | Background

White or View | Background Black menu items.

GLASS APPEARANCE

Windows has added the ability to have a Glassy appearance on applications. If your system is capable

of this glassy look you can use the View/Show Glass If Possible menu item to turn it on. If it is not

possible, or you turn off Glass, the display shows a grey background.

 With Glass On With Glass Off

USBee RX User’s Manual 69

FILE OPERATIONS

Using the File menu you can start a New file, Save trace data, Open previously saved traces and

Export trace data to other file formats.

CREATING A NEW FILE

To start a new file, choose File/New. This will configure the screen to the default state with all

available channels enabled.

SAVING A CAPTURE FILE

After capturing a trace, you can save it to disk using the File/Save As menu item. This saves all trace

data, cursor positions and screen format. The files can be saved in either Uncompressed format

(.usbeesuite extension) or in Compressed format (.usbeecomp extension) to reduce drive space

requirements. Saving and Opening large buffer sizes can take a while to perform the compression

and saving but can greatly reduce disk space.

OPEN AND EXISTING CAPTURE FILE

To view a previously saved capture file, us the File/Open menu item. This will load the trace data and

screen format including decoder setup. Opening files with large buffer sizes can take a while to

decompress and display.

RECENTLY USED FILE LIST

The USBee RX Suite maintains a recently used file list that allows you to quickly load any of the last 5

previously used files. Simply click on the file name in the File, Recently Used file list to open it.

EXPORTING CAPTURED DATA TO A FILE

Since the compressed trace files are not in easily useable format, you can use the File/Export menu

items to save the trace and decoded data into formats that are easy to use.

70 USBee RX User’s Manual

The available options for exporting are:

 Save the Signal Data to a Binary File

 Save the Signal Data to a Text/CSV File

 Save the Bus Data to a Text/CSV file

You can specify the range of samples to export by using the All, X1 to X2, or Screen versions. Screen

will output all samples viewed on the current screen, X1 to X2 will output all samples between the X1

and X2 cursor, and All will output all samples in the sample buffer. Choosing All will create VERY large

files, so use with caution.

EXPORT SIGNAL DATA TO BINARY FILE

When exporting signal data to a binary file, each sample is made up of 4 bytes. Each sample was

taken at the sample rate that was set at the time of capture. A single sample (4 bytes) is formatted as

follows:

Byte Description

1 Digital channels 0 to 7 (lsb= signal 0, msb = signal 7)

2 Digital channels 8 to F (lsb= signal 8, msb = signal F)

3 Channel 1 Analog voltage

(0=-6V, 128 = 0V, 255 = +6V)

4 Channel 2 Analog voltage

(0=-6V, 128 = 0V, 255 = +6V)

USBee RX User’s Manual 71

EXPORT SIGNAL DATA TO TEXT/CSV FILE

When exporting signal data to a text/csv file, each sample is output to a single line with each signal

separated by a comma. Each sample was taken at the sample rate that was set at the time of

capture. An example output file is formatted as follows showing a header that specifies the column

labels and which signal is associated:

Time,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

0.008739333,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008739500,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008739667,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008739833,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740000,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740167,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740333,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740500,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740667,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

0.008740833,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1

EXPORT BUS DATA TO TEXT/CSV FILE

When exporting bus data to a text/csv file, each decoded element is output to a single line with each

field separated by a comma. An example output file is formatted as follows showing a header that

specifies the column labels and which signal is associated:

Time(seconds),Bus Name,Signal Name,Data

0.000007167,SPI 3,MOSI,FF

0.000007167,SPI 3,MISO,24

0.000106333,SPI 3,MOSI,FF

0.000106333,SPI 3,MISO,A4

0.000238667,SPI 3,MOSI,48

0.000238667,SPI 3,MISO,FF

0.000338000,SPI 3,MOSI,A8

0.000338000,SPI 3,MISO,FF

0.000437167,SPI 3,MOSI,18

0.000437167,SPI 3,MISO,FF

0.000542667,I2C 5,SDA,S - Start

0.000558500,I2C 5,SDA,A2 Write

0.000640333,I2C 5,SDA,ACK

0.000661167,I2C 5,SDA,00

0.000743000,I2C 5,SDA,ACK

0.000763667,I2C 5,SDA,0D

0.000845500,I2C 5,SDA,ACK

0.001098833,I2C 5,SDA,P - Stop

72 USBee RX User’s Manual

PRINTING

To print an image of the current screen, choose File/Print from the menu.

CREATING SCREEN SHOTS

An easy way to create documentation is to take screen shots, or portions of the screen image, and

save them to graphics files. You can save the entire USBee RX Suite application window to a file using

the File/Save USBee RX Suite Screenshot menu item. This lets you save the image as a BMP, JPG,

PNG, GIF, TIF, or WMF file to be used by your favorite graphics program.

You can use the File/Save Screenshot Section menu item to select just a portion of the screen to save.

Use the left mouse button to start a rectangle that selects the region to save. When you let up on the

button it will prompt you for the filename to save the image as.

SOFTWARE UPDATES

New versions of the USBee RX Suite software are posted on the USBee.com web site. To have the

USBee RX Suite software check if a new version exists, use the Help/Check for Updates menu item. It

will connect to the USBee.com server and determine if there is a newer version available for

download. If you are up to date, the following screen will appear.

USBee RX User’s Manual 73

DEVELOPING YOUR OWN CUSTOM DECODERS

The USBee RX Suite allows you to create your own custom protocol decoders.

To implement a custom decoder you must create a Class Library (DLL) using the code below as an

example. You can build this Class Library using the free Microsoft Visual Studio 2008 Express or

newer. Our example is in Visual Basic, but can easily be ported to C or other language supported in

Visual Studio.

We will first show how to use a Custom Decoder and then show how to design one.

USING THE CUSTOM DECODER

Using the Custom Decoder that you build is simple. To select to use your Custom Decoder you select

the Custom tab in the Channel Settings dialog box. You can then enter a set of parameters that are

sent to your decoder. These parameters can specify anything you may need to determine how to

decode your protocol, including which protocol, which signals to use, baud rates, inversions, etc. and

is purely defined by you.

Below is the Channel Setting screen showing that we want to use our Custom Decoder on this

waveline. We are also passing the text string “helloworld” to the decoder when it runs.

When we press Save our Decoder is run, passing the parameters to it and the resulting Entries are

displayed. Below is the output from our VERY simple Hello World decoder which puts a “Hello

World!” at the first sample.

74 USBee RX User’s Manual

On a different Waveline you can specify a different set of Parameters (in this case “change 3”) that

indicate to the Custom Decoder to perform an entirely different decode.

As in our example decoder, this “Change” indicates to place an Entry at each change of state of the

specified signal (in this case 3). The resulting display is as follows.

USBee RX User’s Manual 75

Obviously much more complicated protocols can be decoded using these simple methods of

parameter passing and Entry displaying.

BUILDING THE CUSTOM DECODER

To implement a custom decoder you must create a Class Library (CustomUSBeeSuiteDecoder.DLL)

using the code below as an example. This example code is also included when you install the USBee

RX Suite software in the \Program Files\CWAV Inc\USBee RX Suite\CustomUSBeeSuiteDecoderRX\

directory. You can build this Class Library using the free Microsoft Visual Studio 2010 Express. Our

example is in Visual Basic, but can easily be ported to C or other language supported in VS2010.

The main function of a Custom Decoder code is below.

1. Receive parameters for the protocol from the User Interface

2. Access the sample data and decode the protocol based on the parameters

3. Output “Entries” that consist of a Start Sample, End Sample and a Text String

Once you create your own CustomUSBeeSuiteDecoderRX.DLL file, you simply copy your new file over

the one that was provided with the original install in the \Program Files\CWAV Inc\USBee RX Suite

directory. You may need to locate this file on your system and have administrator rights in order to

replace it.

76 USBee RX User’s Manual

EXAMPLE CLASS LIBRARY CODE

Below is our example Class Library source code that performs a few different protocol decodes and

displays the results on the waveline. A version that includes an actual NEC IR decoder is installed

with the USBee RX Suite. Use this example to start your own.

Option Explicit On

Option Strict On

Imports System.IO

Public Class CustomUSBeeSuiteDecoderRX

 Declare Function SampleData Lib "usbeerxste.dll" Alias "?LoggedData@@YGJ_J@Z" (ByVal Index As Int64) As Integer

 Declare Function FindNextEdge Lib "usbeerxste.dll" Alias "?FindNextEdge@@YG_J_JKK@Z" (ByVal start As Int64, ByVal Mask As Integer,

ByVal direction As Integer) As Int64

 ' The SampleData routine returns a 4 byte value that contains a single sample of all the signals

 ' The format of the 32 bits returned is as follows:

 '

 ' MSB LSB

 ' XXXXXXXXYYYYYYYYFEDCBA9876543210

 '

 ' where XXXXXXXX is Channel 2 Analog value (0=-6V, 255 = +6V)

 ' YYYYYYYY is Channel 1 Analog value (0=-6V, 255 = +6V)

 ' F is logic level (0 or 1) for channel F

 ' E is logic level (0 or 1) for channel E

 ' D is logic level (0 or 1) for channel D

 ' ...

 ' 0 is logic level (0 or 1) for channel 0

 '

 ' FindNextEdge routine scans the sample buffer starting at the start sample number to find the next sample

 ' with an edge on any masked channels. Mask bits aligned as above with 1 considered, 0 being ignored.

 ' direction 1 = forward, 0 = backward.

 „ FindNextEdge should be used instead of SampleData whenever possible since it is much faster.

 ' Return value is the sample number at the next edge or -1 if there is no more edges in that direction.

 Dim GTriggerSample As Int64

 Dim GX1Sample As Int64

 Dim GX2Sample As Int64

 Public Sub SetCaptureParameters(ByVal TriggerSample As Int64, ByVal X1Sample As Int64, ByVal X2Sample As _ Int64)

 ' This routine is called at the end of a capture to pass the Trigger and X1 and X2 Cursors to the

 ' custom decoding process.

 GTriggerSample = TriggerSample

 GX1Sample = X1Sample

 GX2Sample = X2Sample

 End Sub

 Public Sub DecodeCustom(ByVal OutFilename As String, ByVal NumberOfSamples As Int64, ByVal SamplingRate As _ Integer, ByVal Parameters

As String)

 Dim OldSample As UInteger

 Try

 ' This is a custom bus decoder Processing Routine

 '

 ' The passed in variables are as follows:

 ' OutFilename - the file that all of the decoded Entries get written to. This is the file

 ' that the USBee Suite

 ' will read to display the data on the waveline.

 ' ActualNumberOfSamples - How many samples are in the sample buffer

 ' SamplingRate - The rate that the samples were taken in sps. 24000000 = 24Msps...

 ' Parameters - User defined string passed from the USBee Suite user interface Channel Setting

 ' for the custom decoder.

 ' Use this string to pass in any parameters that your decoder needs to know,

 ' such as what channels to use

 ' in decoding, which protocol if you have multiple protocols supported here, and

 ' how you want the data formatted.

 ' Below is an example set of Custom Protocol decoders that show how to access the sample buffer

 ' and how to generate output that get sent to the screen.

 ' Setup the File Stream that stores the Output Entry Information

 Dim FS As New FileStream(OutFilename, FileMode.Append, FileAccess.Write)

 Dim BW As New BinaryWriter(FS)

 Dim Sample As Int64

 SampleData(0) ' Initializes the sample retrieval

 ' Since this file supports different custom decoders, we need to see which one to run based on the Parameters string

 If CBool(InStr(Parameters.ToUpper, "CHANGE")) Then

 ' Sample Decoder that just detects when a signal changes state

 ' The signal to use for the detection is specified in the Parameters as the second parameter

 Dim Params() = Parameters.Split(CChar(" ,-"))

 Dim SignalToUse As Double = Val(Params(1))

 Dim SignalMask As Integer = 1 << CInt(SignalToUse) ' Make the mask that will mask off the channel we want in the sample

 ' Now go from the start of the samples to the end and process the decoder

 For Sample = 0 To NumberOfSamples - 1

 ' This example decoder places a label at every transition of a digital signal

 Dim NextEdge = FindNextEdge(Sample, SignalMask, 1)

 If NextEdge >= 0 Then ' Edge was found

 WriteEntry(BW, NextEdge, NextEdge + 100, "Changed! S:" & Sample & "N:" & NextEdge)

 Else

 ' There are no more edges so end

 Exit For

 End If

 Sample = NextEdge - 1

 Next

 ElseIf CBool(InStr(Parameters.ToUpper, "RISE")) Then

 ' Sample Decoder that just detects when a signal changes state

 ' The signal to use for the detection is specified in the Parameters as the second parameter

USBee RX User’s Manual 77

 Dim Params() = Parameters.Split(CChar(" ,-"))

 Dim SignalToUse As Double = Val(Params(1))

 Dim SignalMask As Integer = 1 << CInt(SignalToUse) ' Make the mask that will mask off the channel we want in the sample

 ' Now go from the start of the samples to the end and process the decoder

 For Sample = 0 To NumberOfSamples - 1

 ' This example decoder places a label at every transition of digital signal 0

 Dim DigitalChannel As UInteger = CUInt(SampleData(Sample) And SignalMask)

 If (DigitalChannel <> OldSample) And (OldSample = 0) Then

 WriteEntry(BW, Sample, Sample + 100, "Rise!")

 End If

 OldSample = DigitalChannel

 Next

 ElseIf CBool(InStr(Parameters.ToUpper, "HELLOWORLD")) Then

 ' Simplest Decoder Possible

 ' Print Hello World at the start of the buffer

 WriteEntry(BW, 0, 100, "Hello World!")

 WriteEntry(BW, GTriggerSample, GTriggerSample + 100, "Trigger Is Here!")

 WriteEntry(BW, GX1Sample, GX1Sample + 100, "X1 Is Here!")

 WriteEntry(BW, GX2Sample, GX2Sample + 100, "X2 Is Here!")

 ElseIf CBool(InStr(Parameters.ToUpper, "NECIR")) Then

 ' Sample Decoder that just detects when a signal changes state

 ' The signal to use for the detection is specified in the Parameters as the second parameter

 WriteEntry(BW, 0, 100, "NEC IR Decoder 3.0")

 Dim Params() = Parameters.Split(CChar(" ,-"))

 Dim SignalToUse As Double = Val(Params(1))

 Dim SignalMask As Integer = 1 << CInt(SignalToUse) 'Make the mask that will mask off the channel we want in the sample

 Const LOOKING_FOR_HEADER As Integer = 1

 Const LOOKING_FOR_BITS As Integer = 2

 Dim DecodeState As Integer = LOOKING_FOR_HEADER ' Holds what state of the decoder we are in

 Dim ByteAccumlator As Integer = 0 ' Holds the accumulated bits for each byte

 Dim BitCounter As Integer = 0 ' Holds how many bits we have accumulated in this byte so far

 Dim ByteStartSample As Int64 ' Holds the sample at the start of the byte

 Dim Data As UInteger ' Holds the state of the signal at the current sample

 Dim tEdge1 As Int64 ' Where the first edge is

 Dim tEdge2 As Int64 ' Where the second edge is

 Dim tPulseWidth As Double ' The pulsewidth in seconds

 ' Now go from the start of the samples to the end and process the signal

 For Sample = 0 To NumberOfSamples - 1

 Data = CUInt(SampleData(Sample) And SignalMask)

 If DecodeState = LOOKING_FOR_HEADER Then

 If Data <> 0 Then

 ' We found a High which starts the Header

 ' Now look for the next edge

 tEdge1 = FindNextEdge(Sample, SignalMask, 1)

 If tEdge1 >= 0 Then

 ' Check to see if this falling edge is in the right timeframe

 tPulseWidth = (tEdge1 - Sample) / SamplingRate

 If (tPulseWidth >= 0.008) And (tPulseWidth <= 0.01) Then

 ' Now look for the rising edge

 tEdge2 = FindNextEdge(tEdge1, SignalMask, 1)

 If tEdge2 >= 0 Then

 ' Check to see if this rising edge is in the right timeframe

 tPulseWidth = (tEdge2 - tEdge1) / SamplingRate

 If (tPulseWidth >= 0.004) And (tPulseWidth <= 0.005) Then

 ' Great! Valid Header Format! Look for bits from this point on

 ' Write out a Header Marker (remove this if you don't need the header)

 WriteEntry(BW, Sample, tEdge2, "Lead Code")

 DecodeState = LOOKING_FOR_BITS

 Sample = tEdge2

 ' Initialize the Byte Accumulation variables

 ByteStartSample = Sample

 ByteAccumlator = 0

 BitCounter = 0

 Continue For

 ElseIf (tPulseWidth >= 0.002) And (tPulseWidth <= 0.003) Then

 ' Great! Valid Repeat Format!

 ' Find the next falling edge to complete the Repeat

 tEdge2 = FindNextEdge(tEdge2, SignalMask, 1)

 ' Write out a Repeat Marker (remove this if you don't need the Repeat)

 WriteEntry(BW, Sample, tEdge2, "Repeat")

 Sample = tEdge2

 Continue For

 Else

 ' Pulse is not the right size so bail and keep looking

 Sample = tEdge2

 Continue For

 End If

 Else

 ' No edges at all! So we are done

 Exit For

 End If

 Else

 ' Pulse is not the right size so bail and keep looking

 Sample = tEdge1

 Continue For

 End If

 Else

 ' No edges at all! So we are done

 Exit For

 End If

78 USBee RX User’s Manual

 End If

 ElseIf DecodeState = LOOKING_FOR_BITS Then

 If BitCounter = 8 Then

 ' We have an entire byte worth of data so output the information

 WriteEntry(BW, ByteStartSample, tEdge2, Hex(ByteAccumlator))

 BitCounter = 0

 ByteAccumlator = 0

 End If

 If Data <> 0 Then

 ' We found a High which starts the bit

 ' Now look for the next edge

 tEdge1 = FindNextEdge(Sample, SignalMask, 1)

 If tEdge1 >= 0 Then

 ' Check to see if this falling edge is in the right timeframe

 tPulseWidth = (tEdge1 - Sample) / SamplingRate

 If (tPulseWidth >= 0.0005) And (tPulseWidth <= 0.0007) Then

 ' Good start of a bit

 ' Now look for the rising edge

 tEdge2 = FindNextEdge(tEdge1, SignalMask, 1)

 If tEdge2 >= 0 Then

 ' Check to see if this rising edge is in the right timeframe for a logic "0"

 tPulseWidth = (tEdge2 - tEdge1) / SamplingRate

 If (tPulseWidth >= 0.0004) And (tPulseWidth <= 0.0006) Then

 ' Great! Valid 0 Bit Format!

 ' Write out a Bit Marker (remove this if you don't need the bit)

 'WriteEntry(BW, CUInt(Sample), CUInt(tEdge2), "0")

 ' Add this bit to the accumulators (LSB first)

 ByteAccumlator = ByteAccumlator >> 1 ' Shift the Accumulator

 ByteAccumlator = ByteAccumlator And &H7F ' Clear out the MSBit

 ' Mark the start of the byte if so

 If BitCounter = 0 Then ByteStartSample = Sample

 ' Next Bit next time

 BitCounter = BitCounter + 1

 Sample = tEdge2

 Continue For

 ElseIf (tPulseWidth >= 0.001) And (tPulseWidth <= 0.002) Then

 ' Great! Valid 1 Bit Format!

 ' Write out a Bit Marker (remove this if you don't need the bit)

 'WriteEntry(BW, CUInt(Sample), CUInt(tEdge2), "1")

 ' Add this bit to the accumulators (LSB first)

 ByteAccumlator = ByteAccumlator >> 1 ' Shift the Accumulator

 ByteAccumlator = ByteAccumlator Or &H80 ' Set the MSBit

 ' Mark the start of the byte if so

 If BitCounter = 0 Then ByteStartSample = Sample

 ' Next Bit next time

 BitCounter = BitCounter + 1

 Sample = tEdge2

 Continue For

 Else

 ' Pulse is not the right size so bail and keep looking

 DecodeState = LOOKING_FOR_HEADER

 Sample = tEdge2

 Continue For

 End If

 Else

 ' No edges at all! So we are done

 Exit For

 End If

 Else

 ' Pulse is not the right size so bail and keep looking

 Sample = tEdge1

 DecodeState = LOOKING_FOR_HEADER

 Continue For

 End If

 Else

 ' No edges at all! So we are done

 Exit For

 End If

 End If

 End If

 Next

 End If

 ' Close the Output File

 FS.Close()

 Catch ex As Exception

 End Try

 End Sub

 Public Sub WriteEntry(ByRef BW As BinaryWriter, ByVal StartSample As Int64, ByVal EndSample As Int64, ByRef TextString As String)

 ' DO NOT CHANGE THIS ROUTINE!!!

 ' This routine writes the Entry in the file format that is used by the Custom Decoder

 ' This entry specifies the Start Sample, End Sample and the text string to display

 Try

 BW.Write(StartSample)

 BW.Write(EndSample)

 ' Write the length of the string in bytes (include the 0 at the end in the count)

 Dim tStrLen As UInt32

 tStrLen = CUInt(TextString.Length + 1)

 BW.Write(tStrLen)

USBee RX User’s Manual 79

 ' Now write out the characters one byte at a time and put a 0 at the end

 For x As Integer = 0 To CInt(tStrLen - 2)

 BW.Write(CByte(Asc(TextString.Chars(x))))

 Next

 BW.Write(CByte(0))

 Catch ex As Exception

 End Try

 End Sub

End Class

CUSTOM DECODER PARAMETERS

As you can see in the above code, the Parameter string that is passed from the User Interface to your

decoder can be used for a number of purposes. First, it can specify which decoder to run. If you have

more than one protocol that you want your decoder to handle, you can select which decoder runs

using this text string. For example, in our example Custom Decoder we have a few decoders possible,

“CHANGE”, RISE”, “HELLOWORLD” and “NECIR”. Each decoder processes the data differently and

outputs different results based on the algorithms.

You can also supply additional parameters in the text string as well as we do in the CHANGE and RISE

decoders. The additional parameter in these examples indicates which signal to use to decode.

Again, the definition and use of the Parameter string is entirely up to you but provides an easy to use

and simple to implement way to control the behavior of your decoder.

80 USBee RX User’s Manual

ACCESSING SAMPLE DATA TO PERFORM DECODE

To access each individual sample stored in the sample buffer you use the SampleData or

FindNextEdge calls as shown above. This returns a 32-bit value that includes all of the channels levels

at that sample time. The format of the 32 bits is as follows:

 MSB LSB

 XXXXXXXXYYYYYYYYFEDCBA9876543210

 where XXXXXXXX is Channel 2 Analog value (0=-10V, 255 = +10V)

 YYYYYYYY is Channel 1 Analog value (0=-10V, 255 = +10V)

 F is logic level (0 or 1) for channel F

 E is logic level (0 or 1) for channel E

 ...

 0 is logic level (0 or 1) for channel 0

Decoding any given protocol then entails going through the samples from beginning to end and

masking off the channels you need to decode, accumulating decoded bits/bytes along the way and

determining what the result is that you want to display.

Since the USBee RX uses sample compression, there may be trillions of actual samples. Therefore, it

is best, and will result in faster decoder times, to use the FindNextEdge routine instead of individual

SampleData calls when processing a protocol. This routine understands the compression algorithm

and does not waste time processing compressed samples.

OUTPUTTING ENTRIES THAT WILL GET DISPLAYED ON THE

SCREEN

Once your decoder has determined the result of the decode that you want displayed on the screen,

you call the WriteEntry routine above. This gets passed the Start Sample, End Sample and Text String.

Entries appear as rounded rectangles on the screen on the associated wave line and are locked to the

samples that you specify.

For example, the following call places the “Hello World!” string on the screen stretching from the first

sample to the 100th sample.

 WriteEntry(OutFile, 0, 100, "Hello World!")

The output is as follows:

USBee RX User’s Manual 81

CHANGING THE BACKGROUND COLOR OF OUTPUTTED ENTRIES

You can control the background color of the entire WriteEntry item by embedding a color code

anywhere into the text string. Color codes are in the following format:

[RGB]

Where:

R is the Red value and is a single digit of 0 thru 9.

G is the Green value and is a single digit of 0 thru 9.

B is the Blue value and is a single digit of 0 thru 9.

For example:

To output an Entry that has a bright green background, use the following:

 WriteEntry(OutFile, 0, 100, "Hello World![090]")

To output an Entry that has a dark red background, use the following:

 WriteEntry(OutFile, 0, 100, "Hello World![400]")

Some common color codes are as follows:

If you do not embed a color code, the background color will be a light cyan.

82 USBee RX User’s Manual

SMART SEARCH

The USBee RX Suite Smart Search highlights the sections of your trace matching your areas of interest

so that you don’t need to waste time hunting for the data you need.

You can specify up to 32 levels of search events that are any combination of bus decoded traffic,

states or edges of digital or analog signals, inside or outside of analog voltage ranges and/or digital

ranges, and all validated by time specific windows.

Once specified you can pan through the occurrences of your searched items with the click of the

mouse and see the total number of times the searched events occur.

ADDING A SEARCH LINE

To add a Smart Search line on the display, click on the grey tab to the left of the line you want to

change (or click the “+” sign to add a new wave line). Once you click on the Search Tab you will see

the Channel Settings dialog box as below.

USBee RX User’s Manual 83

When you specify a Smart Search and click on Save, the new Search line will be added to the display.

If your captured data matches these events anywhere in the trace it will display a bar at that location

and mark it with a unique number. The trace below has found 480 matches and the display is

showing match 1 through 7 on the first line.

VIEWING SEARCH MATCHES

Once a search has been entered and processed, you can pan through the found matches by using the

left and right arrow buttons on the search line. You can also see the total number of matches by

hovering over the line.

84 USBee RX User’s Manual

ENTERING A SMART SEARCH

The Smart Search uses the specification that you choose in the channel settings Search window to

determine what to highlight on the waveform display.

The search can be made up of up to 32 consecutive Events. Each Event is a selection of various bus,

analog, and/or digital states. To edit an Event, click on the expander to show the Event details as

below.

To enable a line in the Event search, click on the checkbox to the left of the items you want to include

in your search.

You can specify any combination of the available lines in a search Event. All search criteria in a single

Event must occur simultaneously for an event to be considered a match. For example, if you are

looking for an edge on a digital signal, and looking for an analog voltage range, the edge must occur

while the voltage is inside the range to be considered a match.

The following sections detail the available search items for each event and how they function.

USBee RX User’s Manual 85

DIGITAL SIGNAL EDGES

The first line lets you find edges on the digital signals.

First select the Digital line you want to search using the first dropdown box. This box is filled with

only the single signals that are displayed on the screen.

Then choose the edge you want to search for: rising, falling or either rising or falling.

Finally, choose how many edges you need to find consecutively. If you want to find areas that have

NO edges you can specify 0.

Below shows a search that finds all rising edges of the signal Digital 1.

86 USBee RX User’s Manual

ANALOG SIGNAL EDGES

The second line lets you find edges on the analog signals, if your USBee has them.

First select the Analog channel you want to search using the first dropdown box.

Then choose the edge you want to search for: rising, falling or either rising or falling.

Next enter the voltage threshold at which you consider the edge occurring. This value can be

anywhere between -10 and 10 and can include decimal places.

Finally, choose how many edges you need to find consecutively. If you want to find areas that have

NO edges you can specify 0.

Below shows a search that finds all rising edges of the analog signal CH1 with a threshold set at 2.0

Volts. Since the waveform display below is zoomed out the match is shown as simply a line. Zooming

in on the search will show the details.

USBee RX User’s Manual 87

BUS DATA

The next line lets you find values of decoded bus data if your waveform display includes them. You

can specify specific values to find, values to exclude, or ranges of values.

First select the decoded bus channel you want to search using the first dropdown box.

Then choose if you want to find values between (equals) or not between (not equals) the value(s)

that follow.

Next enter the actual value of decoded data you are interested in. If it is a single value, leave the

second field blank. If you are interested in a range of values, specify the end of the range in the

second field.

Below shows a search that finds all decoded data that equals a fixed value of 16.

88 USBee RX User’s Manual

Below shows a search that finds all decoded data that is between 15 and 99.

DIGITAL SIGNAL STATES AND RANGES

The next line lets you find states, or ranges of states, on the digital signals.

First select if you are looking for the digital states to include the values (are), or not include the values

(are not), that follow.

Then specify the states of all of the digital lines by clicking on each individual signal to change from 0,

1, and X (don’t care).

If you are looking for a single set of digital states, leave the second set of signals at all X.

If you want to find a range of states, enter the ending value as the second set of signals. The matched

range will then include all values from the first set to the second set, inclusive.

USBee RX User’s Manual 89

Below shows a search that finds all occurrences of when the Digital 2 signal is logic 0.

Below shows a search that finds all occurrences of when the Digital 2 and Digital 3 signals are 0-0, 0-1,

and 1-0. The range starts at the first setting and increments until the second setting.

90 USBee RX User’s Manual

ANALOG SIGNAL STATES AND RANGES

The next line lets you find voltage ranges on the analog signals, if your USBee has them.

First select if you are looking for the analog voltages to include the values (is), or not include the

values (is not), that follow.

Then specify the voltage range start and end in volts. The matched range will then include all values

from the first set to the second set, inclusive.

Below shows a search that finds all times that the analog signal CH1 is between 1.1V and 4.3V.

USBee RX User’s Manual 91

Below shows a search that finds all times that the analog signal CH1 is NOT between 1.1V and 4.3V.

92 USBee RX User’s Manual

TIME WINDOW QUALIFIER

The final line of each Event specifies a time window for the event to occur.

There are two selections to specify a time window: immediately or anytime.

For the first Event, only anytime is available. This specifies a time period in which the entire event

must occur for a match to be found. For example, if you want to find when two falling edges occur

within 10usecs of each other, specify: This Event happening between 0s and 10us anytime.

For the Events 2-32, both anytime and immediately are available.

Anytime specifies a time period minimum and maximum in which the entire event must occur for a

match to be found. The match can occur anytime after the previous event, but must occur within the

time window. For example, if you want to find when two falling edges occur within 10usecs of each

other, specify: This Event happening between 0s and 10us anytime after the previous event. Below

shows a diagram for the anytime setting. As long as Event 2 is at least Minimum and at most

Maximum time it is considered a match.

Immediately specifies a time period relative to the end of the previous event in which the entire

event must occur for a match to be found. For example, if you want to find when two falling edges

occur within 10usecs of each other immediately following the previous event, specify: This Event

happening between 0s and 10us immediately after the previous event. Below shows a diagram for

the immediately setting. As long as Event 2 occurs between the Minimum time and the Maximum

time it is considered a match.

I

USBee RX User’s Manual 93

Below shows an example of applying a time window. The first search line shows all occurrences of

when the analog CH1 is outside the range 0V to 4V. The second search line is the same criteria with

the addition of a time window applied. Only matches that are between 274us and 10seconds are

displayed. If you are looking for occurrences that are less than a specific time set the first entry to 0s

and the second to the upper limit.

For Events other than the first Event (2-32) you can also specify immediately to indicate that the

event must happen between the first time and second time starting at the end of the previous event.

94 USBee RX User’s Manual

The following example shows two search lines. The first search line shows all occurrences of the CH1

being between 0V and 4V. The second search line shows all occurrences of when the Digital 0 line

has a falling edge within 100usecs of the end of the first search.

USBee RX User’s Manual 95

FAST PAN BUS VIEWING

The USBee RX Suite Fast Pan Bus Viewing lets you quickly pan through a busses decoded data. For

each bus there is a left and right pan button on the left side of the screen. Simply press these buttons

to page to the next or previous bus transactions.

96 USBee RX User’s Manual

SAMPLE AND SMART MARKERS

Placing markers in your traces can help detail what is happening in your design. There are two types

of markers that can be used. The first marker type locks itself to a sample on a waveform and lets

you specify the text. The second is a Smart Marker that automatically measures the pulse width,

frequency, period or duty cycle of the waveform at the marker location.

SAMPLE MARKERS

Markers that are locked to a specific sample are placed using the View | Add Sample Marker menu

item. Once you select this menu item your cursor changes to 4-way arrows and a Sample Marker

moves wherever you move the cursor. To place the marker, position it where you want it and then

press the left mouse button. Another faster way to place Sample Markers is to press the middle

mouse button at the location you want it placed.

You can edit the text within the marker by clicking on the text and typing in the new text. You can hit

Enter to add more lines. As you add text the marker will expand to fit the text. When the waveforms

then redraw, then marker is positioned to remain locked to the correct sample.

To move the marker, click on the Move at the top of the marker. Once you have it moved to the new

location use the left mouse button to place it.

The Mode at the top of the marker changes the direction of the marker. Click on Mode to change

from Left pointing marker to Right pointing marker and vice versa.

To hide all of the markers without deleting them, uncheck the menu item View | Show Marker

Labels. To turn on the markers, make sure this menu item is checked.

To delete the marker, click on the X at the top of the marker. You can delete all markers using the

menu item View | Delete All Markers. This will delete all Sample Markers and Smart Markers.

USBee RX User’s Manual 97

SMART MARKERS

Smart Markers are locked to a specific sample and measure the waveform underneath. They are

placed using the View | Add Smart Marker menu item. Once you select this menu item your cursor

changes to 4-way arrows and a Smart Marker moves wherever you move the cursor. To place the

marker, position it where you want it and then press the left mouse button.

You can edit the text within the marker by clicking on the text and typing in the new text. You can hit

Enter to add more lines. As you add text the marker will expand to fit the text. When the waveforms

then redraw, then marker is positioned to remain locked to the correct sample.

To move the marker, click on the Move at the top of the marker. Once you have it moved to the new

location use the left mouse button to place it.

The Mode at the top of the marker changes the measure mode of the marker. Click on Mode to

cycle through No Measurement, Width, Frequency, Period, and Duty Cycle. An arrow shows the

measured area and the measurement shows up as the last line of the marker.

To hide all of the markers without deleting them, uncheck the menu item View | Show Marker

Labels. To turn on the markers, make sure this menu item is checked.

To delete the marker, click on the X at the top of the marker. You can delete all markers using the

menu item View | Delete All Markers. This will delete all Sample Markers and Smart Markers.

98 USBee RX User’s Manual

ANNOTATIONS AND STICKY NOTES

The USBee RX Suite adds Sticky Notes which you can use to further detail your traces for

documentation purposes. You can also add Title and Footer text to your display that is saved with the

trace file.

USBee RX User’s Manual 99

ANNOTATIONS

Annotation Text Boxes are editable text blocks that are located at the Top and Bottom of the USBee

RX Suite window. Annotation Text Boxes are enabled and disabled using the View | Annotation Text

Boxes menu item.

To edit the text, simply select the box and edit the text. This text is then saved with your capture

files.

100 USBee RX User’s Manual

STICKY NOTES

Sticky Notes are editable text blocks that look like sticky notes. They can be positioned anywhere in

the application window. Sticky Notes are placed using the View | Add Sticky Note menu item. Once

you select this menu item your cursor changes to 4-way arrows and a Sticky Note moves wherever

you move the cursor. To place the note, position it where you want it and then press the left mouse

button.

You can edit the text within the Sticky Note by clicking on the text and typing in the new text. You

can hit Enter to add more lines. As you add text the marker will expand to fit the text.

To move the Sticky Note, click on the Move at the top of the note. Once you have it moved to the

new location use the left mouse button to place it.

To delete the Sticky Note, click on the X at the top of the note. You can delete all Sticky Notes using

the menu item View | Delete All Sticky Notes.

USBee RX User’s Manual 101

ACQUISITION CONTROL

The USBee RX Suite adds more trace acquisition and triggering controls such as Normal Mode,

Automatic Mode, Single Capture and Multiple Capture.

When the USBee RX Suite is first started, no acquisition is taking place. You need to press one of the

acquisition buttons, Capture Once or Capture Many, at the bottom of the window to capture data.

The Capture Many button performs an infinite series of traces, one after the other. This lets you see

frequent updates of what the actual signals are doing in real time. If you would like to stop the

updating, just press the same button again (now reading Stop) and the updating will stop. This mode

is great for signals that repeat over time.

The Capture Once button captures a single trace and stops. This mode is good for detailed analysis of

a single event, rather than one that occurs repeatedly.

The USBee RX Suite adds the ability to have either Normal Mode (default n the Standard version) or

Automatic Mode triggering. This determines when the signals start getting sampled once you press

the Capture buttons. You specify the trigger event by selecting one of the USBee signals to trigger on

(rising or falling edge).

Normal mode will wait for the trigger event to occur before capturing. Select this option using the

Trigger | Normal Mode menu item. If the trigger event does not occur you can press the Stop button

to terminate the capture.

Automatic Mode will wait a set time for the trigger and will automatically trigger if it is not found.

Select this option using the Trigger | Automatic Mode menu item. If the trigger event does not occur

within a specified time, it will automatically start a capture of whatever is on the signals at the time.

You can press the Stop button to terminate the capture.

102 USBee RX User’s Manual

DISPLAY MODES

The USBee RX Suite lets you widen the trace waveforms, display the analog waveforms as vectors or

single sample points, and persist the display from one trace to the next.

The Wide setting shows the waves using a wider pixel setting. This makes the waves easier to see.

You can toggle this setting using the menu item View | Wide Lines.

The Vectors setting draws the waveforms as a line between adjacent samples. With this mode

turned off, the samples are shown simply as dots on the display at the sample position. You can

toggle this setting using the menu item View | Vector-based Waveforms.

The Persist mode does not clear the display and writes one trace on top of the other trace. You can

toggle this setting using the menu item View | Waveform Persistence.

The benefits of these display modes can be seen when you are measuring fast signals and want to get

more resolution out of the oscilloscope than the maximum sample rate allows. See the below traces

to see the difference. Each trace is taken of the same signal, but the second one shows much more

wave detail over a short time of display updates.

USBee RX User’s Manual 103

Persist = OFF, Vectors = ON, Wide = ON

Persist = ON, Vectors = OFF, Wide = ON

104 USBee RX User’s Manual

ANALOG CHANNELS SCALING

The USBee RX Suite provides a scaling ability to convert the analog voltages into other units of

measurement.

By default, each analog channel is set to display the measurements in Volts where 1V is shown as 1V

on the display. Sometimes the measurement might actually mean a different thing than voltage. The

menu item Setup | Analog Channel Settings lets you specify the units of measurement as well as a

scale factor.

Below shows the default setting for the analog channels showing a gain value of 1, offset of 0 and

units of Volts.

USBee RX User’s Manual 105

BROWSER-LIKE NAVIGATION

The USBee RX Suite adds browser-like Forward and Back buttons that let you quickly navigate

through your trace display.

Each time you stop at a certain point when viewing your waveforms, the location is saved to the

history buffer. This allows you to quickly jump back to the previous locations within your trace

without having to scroll, pan or zoom. Press the Back Button (Cyan oval with <<<) to go backwards in

the history buffer. Press the Forward Button (Cyan oval with >>>) to go forward in the history buffer.

106 USBee RX User’s Manual

RELATIVE TIME DECODE

The USBee RX Suite also adds a Relative Time or Absolute Time setting for the decoded data lists.

Absolute Timestamps display the sample time for each decoded bus transaction relative to the

trigger location. You can turn on Absolute Timestamps using the menu item View | Decoder

Timestamps Absolute.

0.017596417,SPI 2,MISO,4A

0.017596417,SPI 2,MOSI,FF

0.017688458,SPI 2,MISO,AA

0.017688458,SPI 2,MOSI,FF

0.017802750,I2C 5,SCL,S - Start

0.017818458,I2C 5,SCL,A2 Write

0.017900542,I2C 5,SCL,ACK

0.017933167,I2C 5,SCL,00

0.018015250,I2C 5,SCL,ACK

0.018049208,I2C 5,SCL,4A

0.018131292,I2C 5,SCL,ACK

0.018179375,I2C 5,SCL,S - Start

0.018195083,I2C 5,SCL,A3 Read

0.018277167,I2C 5,SCL,ACK

0.018328333,I2C 5,SCL,61

0.018410417,I2C 5,SCL,NACK

0.018470208,I2C 5,SCL,P - Stop

0.018633208,Async 0,TX,4A

0.018728542,Async 0,TX,4B

0.018826583,Async 0,RX,4C

0.018921958,Async 0,RX,4D

0.019017333,Async 0,RX,4E

0.019112708,Async 0,RX,4F

0.019208042,Async 0,RX,50

0.019417042,SPI 2,MISO,FF

0.019417042,SPI 2,MOSI,16

0.019509083,SPI 2,MISO,FF

0.019509083,SPI 2,MOSI,96

0.019733167,SPI 2,MISO,6A

USBee RX User’s Manual 107

Relative Timestamps display the time difference since the last bus transaction and the current

transaction. You can turn on Relative Timestamps using the menu item View | Decoder Timestamps

Relative.

+82.042us,I2C 5,SCL,ACK

+51.167us,I2C 5,SCL,22

+82.042us,I2C 5,SCL,NACK

+59.875us,I2C 5,SCL,P - Stop

+160.292us,Async 0,TX,0B

+95.375us,Async 0,TX,0C

+98.042us,Async 0,RX,0D

+95.375us,Async 0,RX,0E

+95.333us,Async 0,RX,0F

+95.375us,Async 0,RX,10

+95.375us,Async 0,RX,11

+210us,SPI 2,MISO,FF

+0ns,SPI 2,MOSI,94

+90us,SPI 2,MISO,FF

+0ns,SPI 2,MOSI,54

+225.083us,SPI 2,MISO,E8

+0ns,SPI 2,MOSI,FF

+91.042us,SPI 2,MISO,58

+0ns,SPI 2,MOSI,FF

+92.042us,SPI 2,MISO,B8

+0ns,SPI 2,MOSI,FF

+114.292us,I2C 5,SCL,S - Start

+15.708us,I2C 5,SCL,A2 Write

+82.083us,I2C 5,SCL,ACK

+32.667us,I2C 5,SCL,00

+82.042us,I2C 5,SCL,ACK

+33.958us,I2C 5,SCL,12

+82.042us,I2C 5,SCL,ACK

+48.083us,I2C 5,SCL,S - Start

+15.708us,I2C 5,SCL,A3 Read

+82.083us,I2C 5,SCL,ACK

+51.167us,I2C 5,SCL,29

108 USBee RX User’s Manual

PACKETPRESENTER™

The USBee RX Suite adds the PacketPresenter™ feature that runs alongside of the existing bus

decoders. The PacketPresenter™ takes the output of raw binary data from the bus decoders and

parses the stream according to users PacketPresenter Definition File for the intent of displaying the

communications in easily understood graphical displays.

OVERVIEW

Using the USBee RX Suite application, it is normal for users to debug communication that is being

transmitted between ICs or system components. This debugging can be performed by viewing the

waveforms on the screen, or by viewing decoded bus traffic for the various types of busses. For

example users can see the voltage versus time waveforms of an ASYNC bus Tx and Rx lines, or decode

the waveform into a byte stream using the standard bus definition (ASYNC for example) that is then

displayed in text in-line with the waveform.

The PacketPresenter™ feature runs alongside of the existing bus decoders of the USBee RX Suite. The

PacketPresenter™ takes the output of raw binary data from the bus decoder and parses the stream

according to users PacketPresenter Definition File for the intent of displaying the communications in

easily understood graphical displays.

USBee RX User’s Manual 109

Protocols are defined using a text file, called a PacketPresenter Definition File, which specifies the

fields within the protocol and how to display that information on the screen. It is intended to be

generic enough that customers can create their own protocol decoders for their own custom bus

types.

It is assumed that each PacketPresenter Definition File will correspond to one single bus type, and

that the incoming bytes from that bus will be inputs for the decoding process. This steam of data is

called an incoming Data Stream and it is handled by a Protocol Processor. Each Protocol Processor

takes a single incoming Data Stream that is broken into Packets, parsed into Fields and either

displayed as a field on the screen, ignored, and/or sent to a new Protocol for further processing (as in

an N layer protocol).

Each Protocol Processor defines how to break the stream into Packets, and how to break the Packets

into Fields. These Fields can then be displayed or sent to another Data Stream for further processing.

Below shows a sample PacketPresenter output screen.

110 USBee RX User’s Manual

SETTING UP THE PACKETPRESENTER

Each digital waveform on the screen can be defined as a different bus (I2C, SPI, etc.) in the Channel

settings dialog box by clicking on the white box to the left of the signal name. Below shows the

Channel Settings dialog box.

To enable the PacketPresenter for this channel, check the “Use PacketPresenter definition file (name

is below)” checkbox. Then choose the PacketPresenter definition file by clicking the Browse button

to the right. Once you choose the file, you can edit the contents by clicking the “Edit File” button.

Once the PacketPresenter is enabled all bus decodes will be processed through the PacketPresenter

as well as the original bus decoder.

VIEWING THE PACKETPRESENTER OUTPUT

Once the bus is defined and the PacketPresenter is setup with a PacketPresenter definition file, right

clicking and dragging on the waveform will parse the decoded bus data based on your

PacketPresenter definition file and display the PacketPresenter results.

The area selected is highlighted with a colored bar background. When you release the right mouse

button, the PacketPresenter results for that section are displayed. The background of the

PacketPresenter window is colored the same as the highlighted section on the waveform.

USBee RX User’s Manual 111

You can show the raw decoded data at the same time by restoring the minimized window as shown

in the following screenshot.

SAVING PACKETPRESENTER DATA TO TEXT OR RTF FILES

The PacketPresenter output can be saved to either a Text file or an RTF file (Rich Text Format). The

text file output is a textual representation of the packets as seen below. Access these features

through the File |Save As Text or File | Save As RTF menu items.

 Layer: CYPRESSRFIC DIR INC ADDRESS READDATA

 Time: 615.2797ms Read False CHANNEL_ADR 0

 Layer: USBBUS PID ADDR EP PID INDATA HS

 Time: 616.0198ms IN 2 0 DATA0 22 2A 00 07 05 81 03 08 ACK

 Layer: USBBUS PID ADDR EP PID INDATA HS

 Time: 617.0197ms IN 2 0 DATA1 00 0A 09 04 01 00 01 03 ACK

 Layer: USBBUS PID ADDR EP PID INDATA HS

 Time: 618.0197ms IN 2 0 DATA0 01 02 00 09 21 11 01 00 ACK

 Layer: USBBUS PID ADDR EP PID INDATA HS

 Time: 619.0197ms IN 2 0 DATA1 01 22 D1 00 07 05 82 03 ACK

 Layer: USBBUS PID ADDR EP PID INDATA HS

 Time: 620.0197ms IN 2 0 DATA0 0A0008 ACK

112 USBee RX User’s Manual

Saving data to an RTF file format saves the graphical nature of the packets and can be read by many

word processing programs, such as Microsoft Word and WordPad. Below is a screenshot of data

saved to an RFT file and viewed using WordPad.

In order to maintain correct position of the graphical portions of the RTF file, all spaces are converted

to the character “~” and set to the background color. Viewed or printed in the RTF format will look

correct as above. If you copy only the text of this output, you will want to search and replace every

“~” with a space.

COPYING PACKETPRESENTER OUTPUT TO OTHER PROGRAMS

You can copy the contents of the PacketPresenter output window to other programs in a number of

ways.

First, you can copy the screenshot of the window by selecting the window and pressing Alt-PrtScr on

your keyboard. This copies the image of the window to the Windows clipboard and you can paste

that image into any program that accepts images.

USBee RX User’s Manual 113

You can also use the Edit | Copy as Text or Edit | Copy as RTF menu items. All packets are copied to

the clipboard in the format specified. Below is a sample of packets copied in RTF format and pasted

into Word.


~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~~DIR~~ ~~INC~~ ~~~ADDRESS~~~ ~WRITEDATA~  

~Packet:~~1~~Time:~7.339333ms~ ~Write~ ~False~ ~CHANNEL_ADR~ ~~~~~0~~~~~  

 

~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~~DIR~~ ~~INC~~ ~~~ADDRESS~~~ ~WRITEDATA~  

~Packet:~~2~~Time:~7.347833ms~ ~Write~ ~False~ ~RX_CTRL_ADR~ ~~~~82~~~~~


~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~DIR~~ ~~INC~~ ~ADDRESS~~ ~READDATA~  

~Packet:~~3~~Time:~7.356833ms~ ~Read~ ~False~ ~RSSI_ADR~ ~~~~20~~~~  

 

~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~DIR~~ ~~INC~~ ~~~~~~ADDRESS~~~~~~ ~RXOW~ ~SOPDET~ ~RXB16~ ~RXB8~ ~RXB1~ ~RXBERR~ ~RXC~ ~RXE~  

~Packet:~~4~~Time:~9.189167ms~ ~Read~ ~False~ ~RX_IRQ_STATUS_ADR~ ~~0~~~ ~~~1~~~~ ~~~0~~~ ~~1~~~ ~~1~~~ ~~~0~~~~ ~~1~~ ~~1~~


~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~DIR~~ ~~INC~~ ~~~~ADDRESS~~~~ ~~~~~~~~~~~~~~~~~~~~~RXDATA~~~~~~~~~~~~~~~~~~~~~~  

~Packet:~~5~~Time:~9.198833ms~ ~Read~ ~False~ ~RX_BUFFER_ADR~ ~08~82~1E~99~A7~28~2A~8A~12~88~9E~58~18~CA~C0~C0~  

 

~~~~~~~~Layer:~RXDATA~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~RECEIVEDATA~~~~~~~~~~~~~~~~~~~  

~Packet:~~6~~Time:~9.204667ms~ ~08~82~1E~99~A7~28~2A~8A~12~88~9E~58~18~CA~C0~C0~


~~~~~~Layer:~CYPRESSRFIC~~~~~~ ~DIR~~ ~~INC~~ ~~~ADDRESS~~~ ~READDATA~  

~Packet:~~7~~Time:~9.265167ms~ ~Read~ ~False~ ~CHANNEL_ADR~ ~~~~0~~~~~  

Below is a sample of packets copied in Text format and pasted into Notepad.  

 

      Layer: CYPRESSRFIC         DIR     INC      ADDRESS     WRITEDATA   

 Packet:  1  Time: 7.339333ms   Write   False   CHANNEL_ADR       0       

 

      Layer: CYPRESSRFIC         DIR     INC      ADDRESS     WRITEDATA   

 Packet:  2  Time: 7.347833ms   Write   False   RX_CTRL_ADR      82       

 

      Layer: CYPRESSRFIC        DIR     INC    ADDRESS    READDATA   

 Packet:  3  Time: 7.356833ms   Read   False   RSSI_ADR      20      

 

      Layer: CYPRESSRFIC        DIR     INC         ADDRESS        RXOW   SOPDET   RXB16   RXB8   RXB1   RXBERR   RXC   RXE   

 Packet:  4  Time: 9.189167ms   Read   False   RX_IRQ_STATUS_ADR    0       1        0      1      1       0       1     1    

 

      Layer: CYPRESSRFIC        DIR     INC       ADDRESS                          RXDATA                        

 Packet:  5  Time: 9.198833ms   Read   False   RX_BUFFER_ADR   08 82 1E 99 A7 28 2A 8A 12 88 9E 58 18 CA C0 C0   

 

        Layer: RXDATA                             RECEIVEDATA                     

 Packet:  6  Time: 9.204667ms   08 82 1E 99 A7 28 2A 8A 12 88 9E 58 18 CA C0 C0   

 

      Layer: CYPRESSRFIC        DIR     INC      ADDRESS     READDATA   

 Packet:  7  Time: 9.265167ms   Read   False   CHANNEL_ADR      0       



114  USBee RX User’s Manual 

CHANGING THE PACKETPRESENTER SIZE 

You can change the size of the fonts used by the PacketPresenter by selecting the View | Larger or 

View | Smaller menu items.  Below are examples of different size fonts. 

 

 

 



USBee RX User’s Manual  115 

SEARCHING FOR PACKETS 

Once displayed, you can search for the next packet that contains certain fields that match your 

criteria.  Below is the Search Packet dialog box that is shown by using the View | Packet Search menu 

item. 

 

In the leftmost textboxes, type the Field Label.  Then select the comparator operator (equals, not 

equals, less than, greater than…) and finally the value that the field is to be compared against.  

Finally, if there is more than one field in the search list, choose whether to AND or OR the search 

terms.  When you click Find, the next packet in the list (starting from the top of the window) will be 

placed at the top of the window.  You can search forward or backward by selecting the appropriate 

radio button on the right. 



116  USBee RX User’s Manual 

FILTERING  PACKETS 

Once displayed, you can filter the output to only show packets that contains certain fields that match 

your criteria.  Below is the Filter Packet dialog box that is shown by selecting the View | Packet Filter 

along with the resulting PacketPresenter output. 

 

In the leftmost textboxes, type the Field Label.  Then select the comparator operator (equals, not 

equals, less than, greater than…) and finally the value that the field is to be compared against.  

Finally, if there is more than one field in the search list, choose whether to AND or OR the search 

terms.  When you click Filter On, only the packets matching the criteria are displayed.  To turn off the 

filtering, click on the Filter Off button. 



USBee RX User’s Manual  117 

MULTIPLE DECODE DISPLAY 

Using the Window | Tile menu you can choose to show the open windows Horizontally, Vertically or 

Cascaded as displayed below. 

           

 



118  USBee RX User’s Manual 

PACKETPRESENTER TO WAVEFORM ASSOCIATION 

When you click on a packet in the PacketPresenter output window, the entire packet is highlighted 

and the associated raw decoded data is highlighted in the decode window.  The original waveform 

screen is also shifted to center the start of the packet in the logic analyzer window.   

 

This feature allows you to correlate what is shown in the PacketPresenter window to the actual 

waveform on the logic analyzer that created that packet.



USBee RX User’s Manual  119 

 

CURSORS ON THE PACKETPRESENTER OUTPUT 

You can place the cursors using the PacketPresenter window by using the left and right mouse 

buttons.  Place the mouse over the packet you want to place the cursor on and click the left or right 

button.  The cursors are placed at the beginning of the packets.  The resulting difference between 

cursors is shown in the Measurement Window. 

If more than one bus is being shown, you can measure the time between packets on different busses 

using the cursors as shown in the following screen.  Set the first cursor by left clicking in the first 

window and place the second by right clicking in the second window. 

 

 



120  USBee RX User’s Manual 

PACKETPRESENTER DEFINITION FILE FORMAT 

Each PacketPresenter Definition file defines how the incoming data stream is represented in the 

PacketPresenter screen of the USBee RX Suite application.  These PacketPresenter Definition files are 

in text format and are easily created using either a simple text editor. 

Each bus defined in the USBee RX Suite application can have a different PacketPresenter Definition 

File. 

The intent of the PacketPresenter is to produce a series of 2 dimensional arrays of labels and values 

to be displayed as below by the user interface.   

Command Length Address Data      

45 2 84DF 34      

         

Command Value        

Read RSSI 14.34        

         

Command Setting      

23 Power Amp On      

It is the PacketPresenter Definition File that defines how the data is to be parsed and displayed. 

COMMENTS IN THE PACKETPRESENTER DEFINITION FILE 

 Comments are started with a semicolon ( ;) and go until the end of the line. 

CONSTANTS IN THE PACKETPRESENTER DEFINITION FILE 

Constants are fixed numbers anywhere in the file.  These constants can be expressed as decimal, hex, 

or binary using suffixes after the value.  Decimal has no suffix.  Hex uses the suffix “h”.  Binary uses 

the suffix “b”. 

So, 

16 = 10h = 10000b 

244 = F4h = 11110100b 

Gain and offset values used in the Fields section are always in decimal and can contain decimal 

places. 



USBee RX User’s Manual  121 

PACKETPRESENTER DEFINITION FILE SECTIONS 

Each PacketPresenter Definition File has the following syntax that separates the file into sections that 

correspond to the Channel definition and each of the Protocol Processors. 

[Protocol] 

. . . 

[Protocol] 

. . . 

[Protocol] 

. . . 

PROTOCOL SECTION 

Each Protocol Section defines what the incoming data stream looks like, how to break the data 

stream into packets, and how to parse out the fields in each of the packets.  Multiple Protocol 

Sections can be defined for passing data from one Protocol Section to another. 

Each Protocol Section has the following syntax that specifies the packetizing and parsing into fields. 

[Protocol] 

name = ProtocolName 

[Packet] 

   packet processing settings 

[Fields] 

   packet field processing settings 

   packet field processing settings 

   packet field processing settings 

   . . . 

The ProtocolName is a label that uniquely identifies this protocol processor.  This name is used in the 

Field definitions to define which Protocol to route a field of data (for use by multilayer protocols). 

The highest level Protocol is the first protocol in the file.  This is the Protocol Processor that is sent 

the incoming data stream from the bus as defined in the Channel Settings Dialog Box for that 

waveform. 

BYTE-WISE BUSSES VS. BIT-WISE BUSSES 

Some busses are by nature byte oriented, while others are bit oriented.  The following table shows 

the type of bus. 

Bytewise Busses 

 Async 

 I2C 

 Parallel 

 SPI 

 PS2 

 

Bitwise Busses 

 Serial 

 I2S 

 OneWire 

 CAN 

 USB 

 



122  USBee RX User’s Manual 

 

BUS EVENTS 

Each bus type also can have certain bus events that may be significant in the decoding of a protocol.  

One such event is an I2C Start Bit.  While the Start bit is not an actual bit in the data stream, it does 

signify to the I2C slave that a certain transaction is taking place.  These bus events are inserted into 

the data stream and can be used (or ignored) by the protocol processors.  The list of Bus Events 

supported is in the following table. 

Bus Type Event 

Async 1 – Parity Error 

I2C 1 - Start Bit  

2 - Stop Bit 

4 - ACK  

8 – NACK 

SPI 1 - SS Active  

2 - SS Inactive 

Note: You MUST have SS On in the channels 

settings for these events to occur 

USB 1 – SETUP/IN/OUT Received  

2 –ACK/NACK/Stall Received 

4 – No Handshake received 

CAN 1 – Start of CAN packet 

2 – End Of CAN packet 

1-Wire 1 - Reset Found 

2 - Presence Found  

Parallel  

Serial  

PS/2 1 – Device to Host byte follows 

2 – Host to device byte follows 

I2S 1 - WordSelect Active  

2 - WordSelect InActive 

SMBus 1 - Start Bit  

2 - Stop Bit 

Table 1. Bus Event Types 

 

A Bus Event of 127 (7Fh) is a special event that occurs at the end of a packet of data that is sent from 

one protocol to another.  This can be used to end the packet sent to the new layer using the [END] 

section and the type = event in the new protocol level. 



USBee RX User’s Manual  123 

 

DATA CHANNELS AND MULTIPLE DATA SIGNALS 

Some buses can also have more than one data signal used in the protocol.  One example of this is the 

SPI bus, where for each byte sent on the MOSI line there is one byte received on the MISO line.  In 

the protocol definition you can specify which of the signals to expect the next field of data to be sent 

on.  In the SPI example, you may get a Command and Length field on one signal, followed by the read 

data back on the other signal.  The decoder would take that into account and show the command, 

Length and Data as a single transaction. 

Multiple signals are differentiated in the PacketPresenter using the X and Y channel specifiers.   These 

channels are specified by selecting the signals to use for that bus in the Channel Settings dialog box.  

The following table shows which signals are the X and Y signals. 

Bus Type  Channel Setting 

Dialog Box setup 

for Channel X 

Channel Setting 

Dialog Box setup for 

Channel Y 

Notes 

ASYNC Least Significant 

Async Channel 

selected 

Next Least Significant 

Async Channel 

selected 

If more than 2 Async 

channels are selected to 

be decoded, the additional 

channels are not used by 

the PacketPresenter. 

SPI Signal chosen for 

MISO 

Signal chosen for 

MOSI 

Data Bytes alternate 

channels since there is one 

byte X for every one byte Y 

1 Wire Data Signal Not used  

I2C Data on SDA/SCL 

bus 

Not Used  

Parallel All Data Signals 

sampled together 

Not Used Each sample of all 

channels is the data word 

sent to channel X 

Serial Serial Data Not Used  

CAN Rx Data Not Used  

PS/2 Data from Device to 

Host 

Data from Host To 

Device 

 

USB Data on D+/D- bus Not Used The data stream contains 

the Sync, PIDs, data fields 

and CRCs. The EOP is not 

included.  See the USB 

Example file for example 

Field Lines. 

Table 2. Channel X and Channel Y Definitions Per Bus Type 

 



124  USBee RX User’s Manual 

PACKET SECTION 

The Packet section defines how a packet is bounded and what, if any, preprocessing needs to be done 

on the packet before the fields can be processed. 

[Packet] 

[Start] 

 . . .  ; How does a packet start? 

[End] 

 . . .  ; How does a packet end? 

[Decode] 

 . . .  ; What decoding needs to be  

        ; done to get real data? 

START AND END SECTIONS 

The Start and End sections define how a packet is bounded.  The available packet bounding Types are 

defined below: 

For [START] 

- Next: The next byte or bit is assumed the start of a packet 

- Signal:  An external signal indicates the start of a packet 

- Value:  A specific value in the data indicates the start of a packet 

- Event:  A bus specific bus Event or Events indicates the start of a packet 

 

For [END] 

 

- Next: The next byte or bit is assumed the end of a packet 

- Signal:  An external signal indicates the end of a packet 

- Value:  A specific value in the data indicates the end of a packet 

- Length:  A specific or calculated length determines the end of a packet 

- Event:  A bus specific bus Event or Events indicates the end of a packet 

- Timeout:  A packet ends after a set timeout without data or events 

TYPE = NEXT 

The start or end of a packet is the next byte or bit to arrive.   

[Packet] 

[Start] or [End] 

type = Next  ; Start/End of a packet is the 

                 ; next byte/bit to arrive 

 



USBee RX User’s Manual  125 

TYPE = SIGNAL 

The start or end of a packet can be indicated by a separate signal (such as a chip select or a frame 

signal) using the signal setting. 

[Packet] 

[Start] or [End] 

type = signal    ; Start/End of a packet is based  

                 ; on a signal 

signal = signalvalue   ; Signal number 0 - 15  

level = 1    ; level the signal needs to be 

TYPE = VALUE 

The start or end of a packet can be indicated by a certain data value contained in the data using the 

value setting.  Multiple values can be used, where any one match starts or ends a packet. All bits in 

the Value are included in the resulting packet at the start of the packet.  You must also specify the 

number of bits that the value covers (defaults to 8 bits if not specified) using the bits keyword.  You 

can specify a mask value to apply to the start data and values.  When the mask value has a bit that is 

a 1, that bit in the value and data are compared. All values are assumed MSB first. 

[Packet] 

[Start] or [End] 

type = value ; Start/End of a packet is based on a data value 

mask = bitmask   ; Bitmask to apply to the data stream 

value = value1   ; value that the data needs to be to start/End  

value = value2   ; value that the data needs to be to start/End  

value = value3   ; value that the data needs to be to start/End  

bits = 8 ; how many bits in the start/End word 

 

You can use the EXCLUDE keyword in the [END} section to leave the end data on the data stream for 

the next packet.  This is useful for when there is no indication of the end of a packet except for the 

arrival of the next packet. 

TYPE = LENGTH 

Only valid in the [END] section, the end of a packet can be indicated by a certain length of data.  You 

use the BitLength or the ByteLength keywords to specify how long the packet is.  The length can 

either be a fixed length expressed as a constant, or variable length based on the contents of a packet 

in the data stream. 

type = length        ; End of a packet is based  

                     ;    on a length 

Bytelength = length  ; How many bytes per  

                     ;    packet 

or 

Bitlength = length   ; How many bits per packet 

To use the contents of one of the fields as the packet length, you use the name of the field defined in 

the Fields section.  You can also do simple arithmetic on the field value to compute the final packet 

size. 



126  USBee RX User’s Manual 

type = length      ; End of a packet is based  

                   ; on a length 

Bytelength = fieldname * 2 + 2   

            ; field holding packet size 

            ; * (or /) a constant (optional) 

            ; + (or -) a constant (optional) 

If present, the * or / must come before the + or – offset and is executed first. 

For example, if fieldname Field has the contents of 16, then the following is true: 

fieldname * 2 + 2 = (16*2)+2 = 34 

fieldname + 2 = 16+2 = 18 

fieldname / 2 - 2 = (16/2)-2 = 6 

fieldname / 2 = 16/2= 8 

fieldname + 2 * 2 = invalid (* must come before offset) 

fieldname - 2 / 2 = invalid (/ must come before offset) 

The length of the packet includes ALL of the data from each of the data channels for that bus.  If the 

bus contains only one data channel (such as I2C), the length counts all data on that one bus.  If the 

bus has two data channels, the length refers to all data on both channels combined. 

TYPE = EVENT 

The start or end of a packet can be indicated by the reception of any of the bus specific Events.   For 

example in I2C you get a Bus Event for each Start Bit and a Bus Event for each Stop Bit.  In USB you 

get a Bus Event for each Sync word and a Bus Event for each EOP.  Available bus types are defined in 

Table 1. Bus Event Types. 

The event value is a bitmask that includes all events that you want to use.   If any of the events occur, 

a packet will be started or ended. 

type = Event  ; Start/End of a packet is 

              ;    signaled by event 

event = 1 ; Use Event 1. Available events 

              ;    depend on bus type 

or 

event = 3 ; Use either Event 1 or Event 2 

 

TYPE = TIMEOUT 

The end of a packet is determined by a timeout since the last valid data or event on the bus.  The 

timeout is defined in units of microseconds. 

[Packet] 

[Start] 

type = timeout  ; End is after timeout 

timeout = 45 ; microseconds since last data/event received 



USBee RX User’s Manual  127 

 

CHANNELX, CHANNELY OR CHANNELXORY 

CHANNELX, CHANNELY or CHANNELXorY specifies what channel is used when an event or data is 

defined for starting or ending a packet.  Channel X and Channel Y are different based on what the 

physical bus is and can be found in Table 2. Channel X and Channel Y Definitions Per Bus Type.  If it 

does not matter which channel the data or event occurs on (it could be either), use the CHANNELXorY 

keyword. 

[Packet] 

[Start] 

type = value  ; Start of a packet is based on  

             ;     a data value 

value = 41h ; value of data that starts the 

            ;     packet 

bits = 8 

channelX ; data/event must be received  

                 ;     on channel X 

  or 

channelY ; data/event must be received  

                 ;     on channel Y 

  or 

channelXorY ; data/event must be received  

                 ;     on either channel X or Y 

 

DECODE SECTION 

Each packet can have encoding on the data that needs to be removed in order to see the real data.  

This section defines what decoding should be done to the packet.  The entire packet from start to end 

is sent through the decoders.  If only select parts of the packet needs to be decoded, you must create 

your own Add-In decoder using the ADDIN keyword. 

Available decoding types are:  

Keyword Definition 

NRZI A bit change on the input means a 1 bit on the output, no 

change a 0 

MANCHESTER Remove Manchester encoding from data 

INVERT Invert all bits 

ZBI5 Zero-Bit Insertion removal (removes the 0 added after 5 

1s) 

ZBI6 Zero-Bit Insertion removal (removes the 0 added after 6 

1s) 

ADDIN Call your own packet decoder using the PacketPresenter 

API routine APIDecode() 

substring  Substitute bytes in the stream (no spaces allowed) 

 

Multiple decoders can be used and are processed in the order listed.   



128  USBee RX User’s Manual 

SUBSTITUTIONS 

Substitutions allow a sequence of bytes (up to 3) to be replaced with a different set (same size or less) 

of bytes.  They can only be used on bytestreams, not bitstreams.  Substrings define the bytes input 

and the bytes output.  The Substrings must not contain any spaces.  Examples of this are below: 

[1]=[2] ; Replaces all 1s with 2s 

[1][2]=[3] ; Replaces all 1 immediately  

              ;     followed by 2 with 3 

[1][2]=[3][4] ; Replaces all 1 immediately   

                ;    followed by 2 with 3  

                ;    immediately followed by 4 

[1][2][3]=[4] ; Replaces all 1, 2, 3 with 4 

[1]=[2][3][4] ;    INVALID, the number of  

                ;    output bytes must be less  

                ;    than or equal to the input 

As an example, the HDLC protocol uses the byte value 7Eh as the start and end flag of the packets and 

replaces all 7Eh in the data with the bytes 7Dh followed by 5Eh. It also replaces all 7Dh in the data 

with the bytes 7Dh followed by 5Dh.  To remove this coding you would use the lines: 

[7Dh][5Eh]=[7Eh] 

[7Dh][5Dh]=[7Dh] 

FIELDS SECTION 

Once the packet is delineated and decoded by the previous sections, it is ready to be displayed by the 

PacketPresenter.  Since each packet is made up of fields, the Fields section defines how the packet is 

broken up into its fields and what to do with the field data. 

FIELD LINES PROCESSING 

During processing, the Fields Section is processed one Field Line at a time in the order that they are 

listed in the FIELDS section.  Each Field Line is parsed against the incoming data packets.   

Once a single Field Line is successfully processed and output, the PacketPresenter starts over at the 

top of the Filed Lines list for the next packet.  This ensures that there is only one output packet for 

each input packet for a given protocol. 

There are 2 types of Field Lines.  A Field Line can be conditional or unconditional.  Unconditional Field 

Lines are processed for any packet.  Conditional Field Lines are only processed if certain fields match 

a specific value.  

Any Unconditional Field Line (no conditionals) generates an output line on the PacketPresenter 

screen.   Any Conditional Field Line that evaluates to True generates an output line on the 

PacketPresenter screen.    Any Conditional Field Line that evaluates to False is skipped and produces 

no output line on the PacketPresenter screen.    

The Field Lines should be listed with the conditional field lines first followed by an unconditional field 

line to catch all packets that are not explicitly defined in the conditional field lines. 



USBee RX User’s Manual  129 

UNCONDITIONAL FIELD LINES 

Unconditional Field lines are parsed and decoded data is output for every packet that is input.  The 

Fields specify how to interpret the data and how to output the data. 

CONDITIONAL FIELD LINES 

Conditional Field Lines provide a means for defining packets whose contents vary based upon the 

presence of a value in another field.  An example of this is a packet that contains a Command Byte 

that determines the format of the rest of the packet.  A Conditional Field Line contains at least one 

field in the packet that includes the =Value token in the input modifiers section.   

If the data contained in the conditional fields of a packet matches the =Value specified for the field, 

the packet is parsed and the data is output.  If the condition field =Value does not match the 

incoming data, then the processor moves on to the next Field Line until it reaches the end of the 

Fields section. 

FIELD LINE FORMAT 

Each Field Line in the Fields Section has the keyword FIELDS followed by a series of individual Fields.  

Individual fields in a packet are separated by commas.  A Field line in the Fields Section defines an 

entire packet from start to end and has the form: 

Fields  Field1,Field2,. . . ,FieldN 

You can also insert a string to be printed out at that location in the packet by using the string ($) 

operator before the string to be printed. Below is an example of a field line with one string added 

between the fields. 

Fields Field1,$String,. . . ,FieldN 

Each field will be output with a Label and a Value.  For String fields, the Label is blank and the Value is 

the String. 

FIELD FORMAT 

Each field in the Field Line is defined using the following syntax and contains no spaces: 

FieldName.InputModifiers (= value).OutputModifiers 

FieldName is the name of the field.  No spaces, commas, semicolons, brackets, dollar signs, periods, 

or quotes are allowed in the fieldname. 

Input and output modifiers change the way incoming data and output data are formatted.  

InputModifiers are a string of characters that represent how many bits are in the field and how the 

input data is to be handled.  First is the number of bits in the field, or N if the field is a variable length.  

Next is any of the following: 

- M: native bit order from that which came off of the bus (default) 



130  USBee RX User’s Manual 

- L: inverted bit order from that which came off of the bus 

- B: invert the Byte order of this multibyte field 

- X or Y: which channel the data is on (for multiline busses) 

- =Value: Indicates that this field MUST be this value for the entire line to be processed 

(Conditional) 

Each modifier is a single character and multiple format modifiers can be combined.   

OutputModifiers are a string of characters that represent how to output the contents of this data.   

Output Modifiers are as follows: 

- I  Ignore - no output (entire field is ignored for output) 

- D Decimal output 

- H Hexadecimal output 

- B Binary output 

- A Ascii output 

- TF  True (nonzero) or False (zero) 

- L Look up the text string to print out in a matching Lookup line 

- *Value or /Value: a value to multiply/Divide the output value by 

- +Value or -Value: a value to offset the output value by 

- $string: string to print after the data (or in place of the data if the i flag is used).  String 

must be the last item in a field.  No commas, quotes, semicolons or parenthesis allowed in 

the string. 

BUS EVENTS IN THE MIDDLE OF A PACKET 

Sometimes a specific bus event plays a role in the packet format.  To specify that a specific bus event 

needs to occur at a specific time in the field sequence, place the single Bus Event value inside 

brackets in the Field Line.  Multiple events in a single value are not allowed, however consecutive 

events are allowed.  To indicate the absence of a specific bus event in the protocol, use the ! (Not) 

operator. 

For example, if the bus is I2C, use the following to require that a Start Bit is present between field1 

and field2: 

Fields  Field1,[1],Field2 

If there is a start bit between the 2 fields, then that Field Line will be processed. 

And use the following to require that a Start Bit is NOT present between field1 and field2: 

Fields  Field1,[!1],Field2 

If there is a start bit between the 2 fields, then that Field Line will not be processed. 

The Bus Events are defined in Table 1. Bus Event Types. 



USBee RX User’s Manual  131 

LOOKUP TABLES 

Often fields contain values that mean something unrelated to the actual number of the data.  Lookup 

Tables provide a way to output a string of text instead of a data value for a field.   For each field 

wanting to use a lookup table, use the “L” output modifier in the field format and then define the 

table in the FIELDS section using the LOOKUP keyword.   

The format of the Lookup table is as follows: 

LOOKUP Fieldname 

[value1]=$string1 

[value2]=$string2 

. . . 

Fieldname is the name of the field associated with this lookup table.  valuen refers to the actual data 

value of the field.  stringn is the text string that is output instead of the valuen. 

If a lookup entry is not present for the data value (not found in the Lookup Table or the Lookup Table 

does not exist), then the data value is output. 

For example, the following table will assign the text strings for various values of the data for the 

CommandByte field.  When the field CommandByte,8,L is processed, the strings are output instead of 

the value 

Lookup CommandByte  

[0]=$Read 

 [1]=$Write 

 [2]=$Seek 

 [3]=$Loc 

 [4]=$Size 

The Lookup Tables are only associated to the specific Protocol they are contained in.  Therefore you 

can have a CommandByte lookup table in ProtocolA that is different from a CommandByte lookup 

table in ProtocolB.  Within a single Protocol, you need to make sure that the Fieldnames are unique 

for all Lookup Tables so that the PacketPresenter can determine which table to use. 

EXAMPLES OF FIELD LINES AND FIELDS 

 

JUST PLAIN DATA 

Fields contain data that may or may not be of interest to the user.  Many times the data is 

information that just needs to be output to the viewer.  Being binary data, each field may need to be 

translated numerically to mean something.  To output a field of data, you can specify the radix (if it 

should be shown in Hex, Decimal, binary) as well as a gain and offset to scale the data.  Finally you 

can add a string to the field to complete the information.  All scaling is performed first using floating 

point and then the output formatting is applied.   

Below is an example of a field to just output the data. 



132  USBee RX User’s Manual 

Fields Volts.16m.d*1.5-37.256$mV 

This Field Line contains one field named “Volts”, which is 16 bits long in msbit first order.  The output 

is to be displayed in decimal format, multiplied by 1.5, offset by - 37.256 and finally appended with 

“mV” before output to the PacketPresenter screen. 

For an input packet as follows: 

0000001100001100. . . 

The output would be: 

Volts      

1132.744mV      

 

which is the input 16 bits in msbfirst order (0x30C) times the gain of 1.5 plus the offset of -37.256 

output in decimal format plus the “mV” string.   

CONDITIONAL PACKET FORMAT 

Using the Conditional input modifier, many different field arrangements can be defined for the same 

packet.  Common uses are for parameter fields that exist for different types of commands.  If packets 

contain commands that determine what the remaining fields are, this syntax defines what those 

remaining fields are.   

Below is an example of various packet formats based on a single command field. 

Fields Command.4m=0.h,Address.8m.h 

Fields Command.4m=2.h,Address.8m.h,Data.8m.h 

Fields Command.4m=4.h,Param1.8m.h,Param2.8m.h,Param3.8m.h 

For an input packet as follows: 

0010 00011101 00001000. . . 

Followed by a packet: 

0100 00011101 00001000 11111110. . . 

The output would be: 

Command Address Data      

2 1D 08      

 

Command Param1 Param2 Param3      

4 1D 08 FE      

 

which are the fields associated with the Command=2 and Command=4 Field Lines. 



USBee RX User’s Manual  133 

STRING LOOKUP 

Fields that can be better expressed as text strings can be outputted as such using a Lookup table.   

Below is an example of a field that uses a lookup table. 

[Fields] 

Fields StartByte.8.H, CommandByte.8.L, EndByte.8.H 

Lookup CommandByte  

  [0]=$Read 

  [1]=$Write 

  [2]=$Seek 

  [3]=$Loc 

  [4]=$Size 

For an input packet as follows: 

00100001 00000001 00001000. . . 

The output would be: 

StartByte Command EndByte      

21 Write 08      

which is the text associated with the Command Field 4 bits in msbfirst order (0010b = 2). 

CONDITIONAL ROUTE OF DATA TO ANOTHER PROTOCOL 

Many embedded protocols support multiple layers of protocol, where each protocol layer handles a 

different set of services or functions.  In these multilayer protocols, a field of data from one protocol 

layer may be the input data to another layer of protocol.  Routing this field of data to a new Protocol 

is as easy as naming the Field the same name as the Protocol.  If the Field name matches any 

protocol, the entire data for that field is passed to that Protocol for processing. 

Below is an example that shows a field being sent to a new layer (Layer2) of protocol when the 

command field is a 1. 

[Protocol] 

name = Layer1 

[Packet] 

[Decode] 

[Fields] 

Fields Command.4=0.h,Address.8.h 

Fields Command.4=1.h,Layer2.48.h 

 

[Protocol] 

name = Layer2 

[Packet] 

[Decode] 

[Fields] 

Fields L2Command.4=0.h,RSSI.8.d 

Fields L2Command.4=1.h,QoS.16.d 

Fields L2Command.4=2.h,Layer3.44.h 



134  USBee RX User’s Manual 

PACKETPRESENTER ADD-IN API 

The USBee RX PacketPresenter automatically processes many types of data streams.  However, it 

cannot decode custom coded data streams.  Using the PacketPresenter Add-In API, the data stream 

can be decoded to the basic data values for any custom coding. 

The USBee RX software package includes a sample DLL project in Microsoft VC6 format (in the 

installation directory of the USBee RX software) called AddIn that allows you to customize a decoder 

for your data streams. 

The DLL library called usbeeai.dll (USBee Add-In) has the following interface routine that is called by 

the PacketPresenter if the ADDIN keyword is used in the DECODE section of the PacketPresenter 

Definition File. 

CWAV_EXPORT unsigned int CWAV_API  APIDecode(   

char *Protocol,  

char bitIn,  

char &bitOut,  

char reset ); 

This routine is called for each bit of data in the data stream.  Protocol is the string name of the 

Protocol being processed and allows you to create an add-in that handles many different kinds of 

decoding.  The parameter “reset” is set to a 1 for the first bit of a packet and 0 for all bits following.  

The next bit from the stream is passed in using the parameter “bitIn” (1 or 0).   

After your code decodes the stream, you can either send back no data (return value of 0), or send a 

new bits back using the “bitOut” pointer (one bit per char) and a return value of the number of bits 

returned. 

The default Add-In routine simply is a pass through so that the output data stream equals the input 

data stream.  Start with this library source code to add your custom decoding. 



USBee RX User’s Manual  135 

SAMPLE PACKETPRESENTER ADD-IN DECODERS 

Custom decoders can perform complicated decryption and byte or bit manipulation.  Ignoring the 

actual algorithm that is executed, these decoders may reduce, enlarge or keep constant the number 

of bits in the data stream.  The following examples are intended to show how these streams can be 

shortened, lengthened or modified.  Useful decoders will need to have the appropriate algorithms to 

compute the true values of the output bits. 

LOOPBACK DECODER 

This Add-In simply loops back the data (out = in). 

CWAV_EXPORT unsigned int CWAV_API APIDecode(char *Protocol, char bitIn, char *bitsOut, char reset ) 

{ 

 

 // This will be the Add-In routine that is called by the PacketPresenter 

 // when the ADDIN keyword is used in the DECODE section of the  

 // PacketPresenter Definition File. 

 

 // This routine is called for each bit of data in a data packet.   

 // The parameter "reset" is set to a 1 for the first bit of a packet and  

 // 0 for all bits following.  The next bit from the stream is passed in  

 // using the parameter "bitIn" (1 or 0). After your code decodes the stream,  

 // you can either send back no data (return value of 0), or send new bits back 

 // using the "bitOut" pointer (one bit per char) and a return value of the number  

 // of bits returned. The default Add-In routine is simply is a pass through so  

 // that the output data stream equals the input data stream.   

 // Start with this library source code to add your custom decoding. 

 

 *bitsOut = bitIn;     

 

 return( 1 );  // Indicates that there is 1 return data bit 

} 

INVERTING DECODER 

This Add-In inverts the packet data (out = Not(in)). 

CWAV_EXPORT unsigned int CWAV_API APIDecode(char *Protocol, char bitIn, char *bitsOut, char 

reset ) 

{ 

 if (bitIn) 

  *bitsOut = 0;     

 else 

  *bitsOut = 1;     

 return( 1 );  // Indicates that there is 1 return data bit 

} 

EXPANDING DECODER 

This Add-In shows how to convert a stream to a larger stream (expanding the bits).  In this case each 

bit becomes two output bits. 

CWAV_EXPORT unsigned int CWAV_API  APIDecode(char *Protocol, char bitIn, char *bitsOut, 

char reset ) 

{ 

 *bitsOut++ = bitIn;     

 *bitsOut++ = bitIn;     

 

 return( 2 );  // Indicates that there is 2 return data bits 

} 

 



136  USBee RX User’s Manual 

COMPRESSING DECODER 

This Add-In shows how to remove bits from a stream (compressing the bits).  In this case each bit pair 

becomes a single bit, basically throwing away the first bit. 

CWAV_EXPORT unsigned int CWAV_API  APIDecode(char *Protocol, char bitIn, char *bitsOut, 

char reset ) 

{ 

 static everyother = 0; 

 

 if (reset)   // Reset the state of the decoder if 

reset=TRUE 

  everyother = 0; 

 

 if (everyother) 

 { 

  *bitsOut = bitIn;     

  return( 1 );  // Indicates that there is 1 return data 

bit 

  everyother = 0; 

 } 

 else 

  everyother = 1; 

 

 return( 0 );  // Indicates that there are no return data bits 

} 



USBee RX User’s Manual  137 

MULTIPLE DECODERS 

This Add-In shows how to use the Protocol string to selectively decode different types of packets. 

CWAV_EXPORT unsigned int CWAV_API  APIDecode(char *Protocol, char bitIn, char *bitsOut, 

char reset ) 

{ 

 static everyother = 0; 

 

 if (!strcmp( Protocol, “COMPRESS”) 

 { 

  if (reset)   // Reset the state of the decoder if reset=TRUE 

   everyother = 0; 

  if (everyother) 

  { 

   *bitsOut = bitIn;     

   return( 1 );  // Indicates that there is 1 return data bit 

   everyother = 0; 

  } 

  else 

   everyother = 1; 

  return( 0 );  // Indicates that there are no return data bits 

 } 

 else if (!strcmp( Protocol, “EXPAND”)  

 { 

  *bitsOut++ = bitIn;     

  *bitsOut++ = bitIn;     

  return( 2 );  // Indicates that there is 2 return data bits 

 } 

 

 // No matching decoder label found so just loopback the data 

 *bitsOut = bitIn; 

  

 return(1);   

} 

 

PACKETPRESENTER DEFINITION FILE DEBUGGING 

Creating your PacketPresenter Definition File can be made simpler using the Debug mode.  To turn on 

Debug mode, use the DebugOn keyword in ALL [DEBUG] sections of the Definition File. 

[Protocol] 

 name = I2CEEPROM 

[DEBUG] 

 DebugOn   ; Turns On Debug Mode.   

; Comment it out to turn it off. 

[Packet] 

 

When debug mode is on, each packet is output twice in its raw form, showing the data values as well 

as the events from the bus.  The first debug line is the initial bus data.  The second line is the bus data 

after any decoding is completed.  Following the debug lines are the PacketPresenter output packets 

from this same data. 

Below is a screen shot that shows the PacketPresenter that has Debug turned on. 

 



138  USBee RX User’s Manual 

 

 

PACKETPRESENTER SPECIFICATIONS 

The PacketPresenter system has the following limits regarding file size, packets, fields, lookup tables 

etc.  

 100K bytes per PacketPresenter Definition File 

 64K Data Records per Packet (min 64K bits, max 64K bytes) 

 7 Protocols 

 1024 Field Lines per Protocol  

 128 Fields per Field Line 

 64 Lookup Tables per Protocol 

 256 Lookup entries per Lookup Table 

 256 Decoder Substitutions per Protocol 

 3 Bytes per Substitution input or output 

 4 PacketPresenter Windows 

 2.1B bytes per PacketPresenter Output File 



USBee RX User’s Manual  139 

EXAMPLE PROTOCOL FILES AND OUTPUT EXAMPLES 

 

ASYNC PROTOCOL EXAMPLE 
 

; Async Protocol Definition File 

; This file defines the transfers to/from a custom device 

; over an ASYNC bus 

; 

[Protocol] 

 name = ASYNCBus 

 bytewise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = value 

  value = 40h ; Start command 

  mask = F0h ; Mask out the channel number 

 

 [End] 

  type = timeout 

  timeout = 3000 ; 3ms timeout ends the packet 

 

 [Decode] 

 [Fields] 

 

 

  Fields  

   Start.4.h, 

   Channel.4=1.h, 

   Command.8.h, 

   X.16.d/20.48-25$g, 

   Y.16.d/20.48-25$g, 

   Z.16.d/20.48-25$g, 

   Rest.N.h ; Rest of the packet 

   

  Fields  

   Rest.N.h ; Rest of the packet 

 



140  USBee RX User’s Manual 

I2C PROTOCOL EXAMPLE 
 

; I2C EEPROM Protocol Definition File 

; This file defines the transfers to/from an I2C EEPROM 

; with 8 bit address 

; 

[Protocol] 

 name = I2CEEPROM 

 bytewise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = event 

  event = 1 ; Start Bit 

 

 [End] 

  type = event 

  event = 0Ah ; Stop Bit Or NACK 

 

 [Decode] 

 [Fields] 

 

  ; Device Not Present 

  Fields  

   $Device Not Present,   ; Printout this label if match 

   SlaveAddress.7m.h,RW.1.i,  ; Control Byte 

   Address.8m.h,     ; 1 byte address 

   [8]       ; followed by a NACK condition 

   

  ; Set Address  

  Fields  

   $SetAddressCmd,    ; Printout this label if match 

   SlaveAddress.7m.h,RW.1=0.i,  ; Control Byte 

   Address.8m.h,     ; 1 byte address 

   [2]       ; followed by a STOP condition 

 

  ; Write Command 

  Fields  

   $WriteCommand,     ; Printout this label if match 

   SlaveAddress.7m.h,RW.1=0.i,  ; Control Byte 

   Address.8m.h,     ; 1 byte address 

   [!1],      ; NO START condition 

   WriteData.Nm.h     ; Written Data (Variable N) 

 

  ; Current Address Read 

  Fields  

   $CurrentRead,     ; Printout this label if match 

   SlaveAddress.7m.h,RW.1=1.i,  ; Control Byte 

   ReadData.Nm.h     ; Read Data (Variable number N) 

 

  ; Random Read 

  Fields  

   $RandomRead,     ; Printout this label if match 

   SlaveAddress.7m.h,RW.1=0.i,  ; Control Byte 

   Address.8m.h,     ; 1 byte address 

   [1],       ; START Condition 

   SlaveAddress.7m.i,RW.1=1.i,  ; Control Byte 

   ReadData.Nm.h,     ; Read Data (Variable number N) 

 



USBee RX User’s Manual  141 

SPI PROTOCOL EXAMPLE 
 

; Cypress RF IC Protocol Definition File 

; This file defines the transfers to/from a CY6936 RF IC 

; using the SPI bus 

[Protocol] 

 name = CypressRFIC 

 bytewise 

[DEBUG] 

 ;DebugOn 

[Packet] 

 [Start] 

  type = event 

  event = 1 ; SS goes active 

 

 [End] 

  type = event 

  event = 2 ; SS goes inactive 

 [Decode] 

 [Fields] 

  ; RX_IRQ_STATUS_ADR Read and Write Command 

  Fields  Dir.1y=0.L, Inc.1y.tf, Address.6y=07h.L, Dummy.8x.i, RXOW.1x.h, 

SOPDET.1x.h, RXB16.1x.h, RXB8.1x.h, RXB1.1x.h, RXBERR.1x.h, RXC.1x.h, 

RXE.1x.h  

  Fields  Dir.1y=1.L, Inc.1y.tf, Address.6y=07h.L, RXOW.1y.h, SOPDET.1y.h, 

RXB16.1y.h, RXB8.1y.h, RXB1.1y.h, RXBERR.1y.h, RXC.1y.h, RXE.1y.h  

 

  ; TX_IRQ_STATUS_ADR Read and Write Command 

  Fields  Dir.1y=0.L, Inc.1y.tf, Address.6y=04h.L, Dummy.8x.i, OS.1x.h, LV.1x.h, 

TXB15.1x.h, TXB8.1x.h, TXB1.1x.h, TXBERR.1x.h, TXC.1x.h, TXE.1x.h  

  Fields  Dir.1y=1.L, Inc.1y.tf, Address.6y=04h.L, OS.1y.h, LV.1y.h, TXB15.1y.h, 

TXB8.1y.h, TXB1.1y.h, TXBERR.1y.h, TXC.1y.h, TXE.1y.h   

 

  ; RX_BUFFER_ADR Read and Write Command 

  Fields  Dir.1y=0.L, Inc.1y.tf, Address.6y=21h.L,  Dummy.8x.i,  

    RxData.Nx.h   

  Fields  Dir.1y=1.L, Inc.1y.tf, Address.6y=21h.L,  RxData.Ny.h 

  

 

  ; TX_BUFFER_ADR Read and Write Command 

  Fields  Dir.1y=0.L, Inc.1y.tf, Address.6y=20h.L,  Dummy.8x.i,  

    TxData.Nx.h   

  Fields  Dir.1y=1.L, Inc.1y.tf, Address.6y=20h.L,  TxData.Ny.h 

  

  Fields  Dir.1y=0.L, Inc.1y.tf, Address.6y.L,  Dummy.8x.i,  

    ReadData.Nx.h   

  Fields Dir.1y=1.L, Inc.1y.tf, Address.6y.L,  WriteData.Nmy.h 

  

  Lookup Dir 

   [0]=$Read 

   [1]=$Write 

 

  Lookup Address 

   [00h]=$CHANNEL_ADR 

   [01h]=$TX_LENGTH_ADR 

   [02h]=$TX_CTRL_ADR 

   [03h]=$TX_CFG_ADR 

   [04h]=$TX_IRQ_STATUS_ADR 

   [05h]=$RX_CTRL_ADR 

   [06h]=$RX_CFG_ADR 

   [07h]=$RX_IRQ_STATUS_ADR 

   [08h]=$RX_STATUS_ADR 

   [09h]=$RX_COUNT_ADR 

   [0ah]=$RX_LENGTH_ADR 

   [0bh]=$PWR_CTRL_ADR 

   [0ch]=$XTAL_CTRL_ADR 

   [0dh]=$IO_CFG_ADR 

   [0eh]=$GPIO_CTRL_ADR 

   [0fh]=$XACT_CFG_ADR 

   [10h]=$FRAMING_CFG_ADR 

   [11h]=$DATA32_THOLD_ADR 

   [12h]=$DATA64_THOLD_ADR 

   [13h]=$RSSI_ADR 

   [14h]=$EOP_CTRL_ADR 

   [15h]=$CRC_SEED_LSB_ADR 

   [16h]=$CRC_SEED_MSB_ADR 

   [17h]=$TX_CRC_LSB_ADR 

   [18h]=$TX_CRC_MSB_ADR 



142  USBee RX User’s Manual 

   [19h]=$RX_CRC_LSB_ADR 

   [1ah]=$RX_CRC_MSB_ADR 

   [1bh]=$TX_OFFSET_LSB_ADR 

   [1ch]=$TX_OFFSET_MSB_ADR 

   [1dh]=$MODE_OVERRIDE_ADR 

   [1eh]=$RX_OVERRIDE_ADR 

   [1fh]=$TX_OVERRIDE_ADR 

   [26h]=$XTAL_CFG_ADR 

   [27h]=$CLK_OVERRIDE_ADR 

   [28h]=$CLK_EN_ADR 

   [29h]=$RX_ABORT_ADR 

   [32h]=$AUTO_CAL_TIME_ADR 

   [35h]=$AUTO_CAL_OFFSET_ADR 

   [39h]=$ANALOG_CTRL_ADR 

   [20h]=$TX_BUFFER_ADR 

   [21h]=$RX_BUFFER_ADR 

   [22h]=$SOP_CODE_ADR 

   [23h]=$DATA_CODE_ADR 

   [24h]=$PREAMBLE_ADR 

   [25h]=$MFG_ID_ADR 

 

[Protocol] 

 name = RxData 

 bytewise 

[DEBUG] 

 ;DebugOn 

[Packet] 

 [Start] 

  type = next 

 [End] 

  type = event 

  event = 127 ; All Data passed in 

 

 [Decode] 

 [Fields] 

  ; RX_IRQ_STATUS_ADR Read and Write Command 

  Fields  ReceiveData.N.h 

 



USBee RX User’s Manual  143 

CAN PROTOCOL EXAMPLE 
 
; CAN Protocol Definition File 

; This file defines the transfers to/from a custom CAN device 

; over a the CAN bus 

; 

[Protocol] 

 name = CANBus 

 bitwise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = event 

  event = 1 ; Start of CAN packet 

 [End] 

  type = event 

  event = 2 ; End of CAN packet 

 [Decode] 

 [Fields] 

 

  ; Extended Frame Format 

  Fields  SOF.1.i, IDA.11.h, SRR.1.h, IDE.1=1.h, IDB.18.h, RTR.1.h,  

   Rsrv.2.i, Length.4.h, Data.N.h, CRC.15.h, CRCDel.1.h,  

   ACK.1.h, ACKDel.1.h, EOF.7.h 

 

  ; Base frame format 

  Fields  SOF.1.i, ID.11.h, RTR.1.h, IDE.1=0.h, Rsrv.1.i, Length.4.h,  

   Data.N.h, CRC.15.h, CRCDel.1.h, ACK.1.h, ACKDel.1.h,  

   EOF.7.h 

 



144  USBee RX User’s Manual 

 

1-WIRE PROTOCOL EXAMPLE 
 
; One Wire Protocol Definition File 

; This file defines the transfers to/from some 1-Wire devices 

; using the 1-Wire bus 

; 

[Protocol] 

 name = OneWireBus 

 bytewise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = event 

  event = 2 ; Presence Pulse 

 

 [End] 

  type = event 

  event = 1 ; Reset Pulse 

 

 [Decode] 

 [Fields] 

 

  ; These fields are used by Maxim/Dallas Digital Thermometers 

  Fields  ROMCommand.8=F0h.$Search Rom, Data.N.h 

  Fields  ROMCommand.8=33h.$Read Rom, Family.8.h, SerialNumber.48.h,  

   CRC.8.h 

  Fields  ROMCommand.8=55h.$Match Rom, Family.8.h, SerialNumber.48.h, CRC.8.h 

  Fields  ROMCommand.8=CCh.$Skip ROM, Function.8=44h.$ConvertTemp 

  Fields  ROMCommand.8=CCh.$Skip ROM, Function.8=BEh.$Read Scratchpad, Temp.16.d, 

TH.8.h, TL.8l.h, Rsvd.16.i, Remain.8.h, CpC.8.h, CRC.8.h 

 

  ; These fields are used by Dallas Serial Number iButtons 

  Fields  ROMCommand.8=33h.$Read Rom, Family.8.h, SerialNumber.48.h, CRC.8.h 

  Fields  ROMCommand.8=0Fh.$Read Rom, Family.8.h, SerialNumber.48.h, CRC.8.h 

 

  

  ; These packets are used by 1-Wire EEPROMS 

  Fields  ROMCommand.8=33h.$Read Rom, Family.8.h, SerialNumber.48.h, CRC.8.h 

  Fields  ROMCommand.8.h, MemoryCommand.8=0Fh.$Write Scratchpad, 

    Address.16.h, Data.N.h 

  Fields  ROMCommand.8.h, MemoryCommand.8=AAh.$Read Scratchpad, 

    Address.16.h, ES.8.h, Data.N.h 

  Fields  ROMCommand.8.h, MemoryCommand.8=55h.$Copy Scratchpad, 

    AuthCode.24.h 

  Fields  ROMCommand.8.h, MemoryCommand.8=F0h.$Read Memory, 

     Address.16.h, Data.N.h 

 



USBee RX User’s Manual  145 

PARALLEL PROTOCOL EXAMPLE 
 

; Sample Parallel Protocol Definition File 

; This file defines the transfers to/from an unique device 

; 

[Protocol] 

 name = ADevice 

 bytewise 

[DEBUG] 

 ;DebugOn 

[Packet] 

 [Start] 

  type = signal 

  signal = 14 

  level = 0  

 

 [End] 

  type = length      

  Bytelength = 21 

 

 [Decode] 

 [Fields] 

  Fields  

   StartByte.8m.d*2+4$mV,    

   CommandByte.8l.L,    

   FLength.8m.h,    

   SlaveAddress.7m.h,RW.1.L,  

   Long.32m.h, 

   8Bytes.64m.h,    

   NextLayer.Nm.h   

 

 

[Protocol] 

 name = NextLayer 

 bytewise 

[Packet] 

 [Start] 

  type = next  

 [End] 

  type = Event ;End of a packet is signaled by a event     

  event = 127 ; Means the end of the data (only for higher 

layers) 

 

 [Decode] 

 [Fields] 

  Fields 

   Rest.N.h  ; Just print out all the bytes 

 



146  USBee RX User’s Manual 

SERIAL PROTOCOL EXAMPLE 
; Serial Protocol Definition File 

; This file defines the transfers from a serial device 

; 

[Protocol] 

 name = SerialBus 

 bitwise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = value ; Look for a value in the data to start the 

packet 

  value = 6211h ; NOTE: This value is assumed MSbit first in  

      ; the data stream! 

  bits = 16 

  mask = FFFFh 

 [End] 

  type = length 

  bitlength = 64 ; End of command after 64 bits 

 [Decode] 

 [Fields] 

 

  ; Send out the bits of the packet 

  Fields Start.16.h, Nine.9.h, Seven.7.h, Rest.N.b 

 

 



USBee RX User’s Manual  147 

USB PROTOCOL EXAMPLE 
 
; USB Bus Protocol Definition File 

; This file defines the transfers to/from a custom USB device 

; 

[Protocol] 

 name = USBBus 

 bitwise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = event 

  event = 1 ; Setup/In or Out found 

 [End] 

  type = event 

  event = 6 ; ACK, NAK or Stall found or no handshake found 

 [Decode] 

 [Fields] 

 

  ; Any Packet - No Response 

  Fields  Sync.8.i, PID.8.L, Addr.7l.d, EP.4l.d, CRC5.5.i, ; Token 

   [4]   ; No Handshake 

 

  ; Setup – Nakd   ; Token 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

   Sync.8.i, HS.8=01011010b.L  ; Handshake 

 

  ; IN - Nakd 

  Fields  Sync.8.i, PID.8=10010110b.L, Addr.7L.d, EP.4L.d, CRC5.5.i, 

      Sync.8.i, HS.8=01011010b.L   ; Handshake 

 

 

  ; OUT - Nakd 

  Fields  Sync.8.i, PID.8=10000111b.L, Addr.7L.d, EP.4L.d, CRC5.5.i, 

   Sync.8.i, HS.8=01011010b.L  ; Handshake 

 

  ; Setup 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=1.$Clear Feature, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

    

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=0.$Get Status, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=8.$Get Configuration, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=6.$Get Descriptor, bValueL.8L.I, Type.8L.L, 

bIndex.16L.H, bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=16.$Get Interface, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=5.$Set Address, Address.16L.h, bLength.16L.i, 

bLength.16L.i, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=9.$Set Configuration, Config.16L.h, 

bLength.16L.i, bLength.16L.i, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=7.$Set Descriptor, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=3.$Set Feature, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 



148  USBee RX User’s Manual 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=10.$Get Interface, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H,  CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=11.$Set Interface, AltSetting.16L.h, 

Interface.16L.H, bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  Fields  Sync.8.i, PID.8=10110100b.L, Addr.7l.d, EP.4l.d, CRC5.5.i, 

Sync.8.i, PID.8.L, Rtype.8.i,  

bRequest.8L=12.$Sync Frame, bValue.16L.h, bIndex.16L.H, 

bLength.16L.H, CRC16.16.i, Sync.8.i, HS.8.L 

  ; IN 

  Fields  Sync.8.i, PID.8=10010110b.L, Addr.7L.d, EP.4L.d, CRC5.5.i, 

   Sync.8.i, PID.8.L, InData.NL.h, CRC16.16.i,   ; Data 

   Sync.8.i, HS.8.L ; Handshake 

  ; OUT 

  Fields  Sync.8.i, PID.8=10000111b.L, Addr.7L.d, EP.4L.d, CRC5.5.i, 

   Sync.8.i, PID.8.L, OutData.NL.h, CRC16.16.i,   ; Data 

   Sync.8.i, HS.8.L ; Handshake 

 

  ; Catch all 

  Fields Data.NL.h  

 

  Lookup Type 

   [1]=$Device 

   [2]=$Config 

   [3]=$String 

 

  Lookup PID 

   [11000011b]=$DATA0 

   [11010010b]=$DATA1 

   [01001011b]=$ACK 

   [01011010b]=$NAK 

   [01111000b]=$STALL 

   [10110100b]=$SETUP 

   [10000111b]=$OUT 

   [10010110b]=$IN 

   [10100101b]=$SOF 

   

  Lookup HS 

   [01001011b]=$ACK 

   [01011010b]=$NAK 

   [01111000b]=$STALL 



USBee RX User’s Manual  149 

PS2 PROTOCOL EXAMPLE 
; PS2 Protocol Definition File 

; This file defines the transfers from a PS2 device 

; 

[Protocol] 

 name = PS2Bus 

 bytewise 

[DEBUG] 

 ;DebugOn  ; Uncomment this to turn on Debug Packets 

[Packet] 

 [Start] 

  type = next  ; Every byte is the start of the next packet 

  CHANNELXORY  ; Either Device to Host or Host To Device 

 [End] 

  type = TIMEOUT 

  TIMEOUT = 5000 ; End of command after 5msec 

 [Decode] 

 [Fields] 

 

  ; Setting LEDs after command 

  Fields [1], $Device To Host, $Key Down, Scancode.8x.h, [2],  

$Host To Device, HostCommand.8y=EDh.$Set LEDs, 

Ack.8x.i, Parameter.5y.i, Caps.1y.tf, Num.1y.tf, 

Scroll.1y.tf, Ack.8x.i 

  Fields [1], $Device To Host, $Key Down, Scancode.8x.h, [2],  

    $Host To Device, HostCommand.8y.h, Ack.8x.i,   

    Parameter.8y.h, Ack.8x.i 

 

  ; Device to Host 

  Fields [1], $Device To Host, $Key Up, Release.8x=F0h.h,  

    Scancode.Nx.h 

 

  ; All other scancodes 

  Fields [1], $Device To Host, $Key Down, Scancode.Nx.H 

 

  ; Host to Device 

  Fields [2], $Host To Device, Command.Ny.h 

 



150  USBee RX User’s Manual 

USBEE RX ANALOG SIGNAL GENERATOR 

 

The USBee RX has an Analog Signal Generator built in.  It outputs a voltage pattern on the Aout signal 

out the side of the Pod. 

To specify what waveform pattern is generated, you use the Analog Generator section of the USBee 

RX Control Panel as seen below. 

 

There are 5 types of analog signals that can be generated by selecting the associated radio button: 

 Sine 

 Triangle 

 Ramp 

 Square and 

 DC 

You can also select the frequency generated by using the slider to the right of the Frequency line.  

The minimum and maximum voltages are also specified using the sliders from 0V to 3.0V. 



USBee RX User’s Manual  151 

 

Below are a few of the waveforms available. 

 

 



152  USBee RX User’s Manual 

USBEE RX LOGIC PROBE AND DIGITAL VOLTAGE METER 

The USBee RX constantly monitors the state of all of the digital inputs and the 

voltage levels of the CH1 and CH2 inputs.  This way you can see the state of the 

channels even at times you are not capturing waveforms using the Mixed Signal 

Oscilloscope. 

These levels are updated every 500msecs. 

 

 

 

 

 

 

 

 

 



USBee RX User’s Manual  153 

USBEE DIGITAL LOGIC THRESHOLD 

 

The USBee RX features variable Digital Logic Thresholds that can range from -1V to +2V.  Set this logic 

threshold to define the voltage level that indicates the change from a logic “0” to a logic “1”.   

If this level is set incorrectly, or too close to either the top or bottom of your logic range, you will see 

inconsistent waveforms and this level will need to be adjusted. 

 

 



154  USBee RX User’s Manual 

USBEE RX DIGITAL SIGNAL GENERATOR 

The USBee RX has an Digital Signal Generator built in.  It outputs a digital voltage pattern on the D0 

through D7 signals out the side of the Pod. 

To specify what waveform pattern is generated on each of the output signals,, you use the section of 

the USBee RX Control Panel as seen below: 

 

Each of the 8 digital lines can have one of 5 different modes by selecting the associated radio button 

above: 

 The output of the Arbitrary Digital Signal Generator 

 Pulse Width Modulator  

 Logic High Level 

 Logic Low Level 

 Trigger Out signal 

The Logic Low level outputs 0V on the signal. 

The Logic High level outputs 3.3V on the signal. 

The Trigger Out level outputs 0V before the trigger event and 3.3V after the trigger event.  This can 

be used to trigger other equipment to synchronize the captures of data. 

PULSE WIDTH MODULATORS 

Each digital output channel can be configured as a Pulse Width Modulator.  You specify the frequency 

in Hz (0 to 390000) desired as well as the duty cycle in percent (0 to 100) of the waveform. 

The following shows two examples of a PWM signal with different duty cycles. 



USBee RX User’s Manual  155 

 

 



156  USBee RX User’s Manual 

 

ARBITRARY DIGITAL PATTERN GENERATOR 

Each digital output channel can be configured as an arbitrary digital pattern.  You specify the pattern 

by using e Comma Delimited File (CSV) that specifies the Sample Rate (in Hz – 0 to 100000000) and 

each of the samples.   Each pattern can have from 1 to 65535 samples.  A CSV file can be created 

using a simple text editor, or as an output of a program such as Excel. 

 

 

SPECIFYING THE PATTERN WITH A CSV FILE 

To specify the file to use, select the browse button “…” and choose the file.  The file will be parsed 

and the number of samples loaded and sample rate will be sent to the Digital Signal Generator.   

The file format of the CSV files is as follows 

500000, Sample Rate 

23, First sample 

51, Second sample 

… 

84, Last Sample 

Only the first field of each line is considered as a sample.  This allows you to use a spreadsheet that 

computes the samples in the first column.  A sample Excel spreadsheet and the resulting .CSV file is 

included in the Program Files/CWAV Inc/USBee RX Suite directory for you to use. 

 For 65535 samples it takes about 30 seconds to download. 

SAMPLE CLOCKING 

The CSV file specifies the desired sample rate of the clocked out digital samples.  You can then modify 

the sample rate by changing the frequency in the sps text box (from 0 to 100000000). 

You can also specify to use the external C input as the sample clock by selecting the associated radio 

button.  Every cycle of the C input will clock out the next sample in the sequence. 



USBee RX User’s Manual  157 

WAVEFORM GENERATION CONTROL 

The Wait for T checkbox (and the associated T Rising checkbox to specify the polarity) makes the 

USBee RX wait for the T input to have an edge before starting the pattern.  This allows for 

synchronizing the [pattern generation with an external event. 

The Loop checkbox allows you to loop the generated pattern.  If the Wait for T checkbox is selected, 

each cycle waits for the T to be asserted before starting the generation. 

The following screenshot shows the Digital Signal Generator configured to generate 291 samples each 

time the T signal has a rising edge.  In this case the T signal is tied to the CH1 analog signal.  The Loop 

selection makes it repeat, but only after the T signal sees another rising edge.  Since the Digital Logic 

Threshold is set to 1.8V, the T transitions to logic 1 at 1.8V. 

 

 

 



158  USBee RX User’s Manual 

USBEE RX EDGE/PULSE COUNTERS 

The USBee RX can independently measure the number of edges that occur on four of the digital input 

signals (0 through 3).  The number of edges counted is shown in the USBee RX Suite control panel as 

below: 

 

Counting occurs when the Count checkbox is selected.  To clear the counts, press the Clear Counts 

button.  Remember that the counts are affected by the Digital Logic Threshold setting, so you must 

set this correctly for the signals you are measuring for accurate counts. 

Since each Pulse is made up of a rising edge and falling edge pair, you can compute the number of 

pulses by dividing the Number Of Edges by 2. 



USBee RX User’s Manual  159 

USBEE RX FREQUENCY COUNTERS 

The USBee RX can independently measure the frequency four of the digital input signals (3 through 

7).  The frequency measured is shown in the USBee RX Suite control panel as below: 

 

Remember that the measurements are affected by the Digital Logic Threshold setting, so you must 

set this correctly for the signals you are measuring for accurate counts. 

 



160  USBee RX User’s Manual 

GETTING HELP 

We are always eager to help you to get the most out of all USBee products.  If you have any 

questions, comments, bug reports or suggestions, please contact us.  We actively improve our 

product line and your feedback is the key to making the USBee the best embedded development tool 

on the market. 

 

Email us at support@interworldna.com  

or 

Call us at (877) 902‐2979 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto: support@interworldna.com


USBee RX User’s Manual  161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2011 CWAV.  All Rights Reserved 

Printed in the USA 

Version 1.0 


